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In quest of weaker connected topologies 

M . G . TK AC EN KO V. V. TK AC w U K V. V. USP E N S  KI J f R. G . w I LSO N 

Abstract. We study when a topological space has  a weaker connected topology. Various sufficient 

axid necessary conditions are given for a space to have a weaker Hausdorff or regular connected topology. 

It is proved that the property of a space of having ci weaker Tychonoff topology is preserved by any oí 

the free topological gioup functors. Examples are given for non-preservation of this property by "nice" 

continuous mappings. 

The requirement that a space have a weaker Tychonoff connected topology is rather strong, but 

we show that it is difficult Lo construct spaces which would contain no infinite subspaces with a weaker 

connected T3+ -topology. 
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O. Introduction. Let .X be a topological space. If we assume no separation 
axioms then it evidently has a weaker connected topology, Iiamely the indiscrete 
one. In Section 2 we show that any To-space has a weaker connected To-topology 
and a non-one-point Ti-space has a weaker connected 7'1-topology if and only if it 
is infinite - these results 9re easy to prove. 

The nontrivial situations arise when we require the weaker connected topology 
of X to be Hausdorff or regular. For example, no compact Hausdorff disconnected 
space has a weaker Hausdoxff connected topology. On the other hand, every regular 
(or Tychonoff) space X is a retract of a regular (Tychonoff) space with a weaker 
connected topology (see Corollary 2.3). 

The problem of finding an inner characterization for the existence of a weaker 
connected topology seems to be too difficult to be solved in the general case. We give 
a characterization for locally connected spaces and a number of suf€icient conditions 
for having, as well as for riot having, a weaker connected topology. 

1. Notation and terminology. All spaces under consideration are Hausdorff 
if no other separation axioms are assumed explicitly. If X :s a space then 7 ( X )  
is its topology. If A C X then 7 ( A , X )  = {U E 7 ( X )  : A C U }  axid 'T(z,X) = 
7( { z } ,  X). A "rriiip" ~iieítiis a "contiriuous function". A map f : X -+ Y is called 
u condensation i f  i t  i s  a bijection. We also say that f condenses X onto Y. A 
space is called T,-subconnected if i t  can be condensed onto a connected T,-space 
-- 
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or, equivalently, has a weaker connected T,-topology. We say that a space X is 
Ti-closed if X i s  a Ti-space and it is closed in any Ti-space containing .Y. Tlie 
terms "regular space" and "normal space" mean "regular Ti -space" and "normal 
T1-space" respectively. If (X, Y )  is a space and A C X ,  then cl , (A)  (or simply c l (A)  
if it does not lead to a misunderstanding) is the closure of A in the topology Y .  A 
filter [ on the space ( X ,  v) is called open if [ n v is a base of [. If for every U E 
there is a V E [ í l  v such that cl,(V) C U, then [ is called a regular open filter. If 
[ is an open (or a regular open) filter, then it is called an open (or regular open) 
ultrafilter, if it is not properly contained in any open (resp. regular open) filter. 

4 '7 

All other notions are standard and can be found in [4]. 

2. On the existence and non-existence of weaker connected topolo- 
gies. We start with the simplest case of TO- and TI-spaces. 

2.1. Proposition. (1) Any To-space has a weaker connected To-topology; 
(2) a 2 i -space consisting of more than one point has a weaker connected TI -topology 
if and only i f  it is infinite. 

Proof. Let X be a 2'0-space. To prove (1) consider two cases. 
(a) No finite subset of X is dense in X. Let the base of a new topology U be the 
family of all sets X\A where A is a finite subset of X. It is clear that U i s  a topology 
on X weaker than the original one. Each pair of nonempty open subsets of ( X , U )  
intersect so that ( X , U )  is a connected space. 

If we have two different points of X then the closure of one of them in the 
original topology does not contain the other. The complement of this closure belongs 
to U and To-separates {z, y} which proves - that ( X , U )  is a To-space. 
(b) If X = { z l , .  . . , z , }  then let A,  = {xi}  for all i = 1,. . . ,n. The set A; is 
connected so the space X is a iinion of < n of its clopen components, say X = 
Ci U.. . U Ck. If k = 1 then there is nothing to prove. If k > 1, then let U E U 
iff U is an open subset of C:! U . . . U Ck or if U is an open subset of X containing 
c:! u . .  . u Ck. 

It is straightforward to check that U is a weaker connected To-topology on X ,  
so (1) is proved. 

If X is a finite Tl-space, then any weaker TI-topology 03 X is discrete. If it 
is infinite, then the cofinite topology on X is connected, TI and is weaker than the 
original one, which proves (2). 0 
2.2. Proposition. Let X be a TI-space for s o m e  i E {2,3,3;). If H i s  a connected 
T,-space, which is not TI-closed, then X x H has a weaker. connected T,-topology. 

Proof. Choose a T,-space G containing H as a non-closed subspace. Let g E G\H. 
Tlie space X x H is a subspace of Y where Y is a quotient space of X x (H ü { g } )  
obtained by identifying the points of the set X x {y}. The space Y is connected 
anti Y\(X x H )  consists of one point y. Now choose any point x in X x H and 
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identify the points 2 and y in Y .  It is clear that X condenses onto the resulting 
space 2 and that Z is a connected Ti-space. 

2.3. Corollary. Let X be a topological space. Assume that P E {Hausdorff spaces, 
regular spaces? Tychonoff spaces, normal spaces, collectionwise normal spaces, per- 
fectly normal spaces, paracompac t spaces, Lindelof spaces, pseudocompac t spaces, 
countably compact spaces}. If X belongs to the class P,  then there i s  a topological 
space Y with the following properties: 
(1)  Y is subconnected and belongs to P; 
(2) the space X is homeomorphic to a retract of  Y; 
(3) i f  X is a T,-space, then Y is Tl-subconnected. 

Proof. Let D be a discrete space of power continuum. If P is any of the properties 
above except for countable compactness, pseudocompactness or Lindelof property, 
then Y = X x D will have P.  It is clear that X is a retract of Y. The space Y can 
be condensed onto X x R and the latter space is subconnected by Proposition 2.2. 
It is evident that the axioms of separation are preserved in this case. 

If X is a Lindelof space, then Y = X x IR is also Lindelof (since IR is o-compact) 
and T,-subconnected. Let G be a E-product lying in some uncountable power of the 
unit segment [O, 11. If X is countably compact (or pseudocompact), then Y = X x G 
is Tl-subconnected (by Proposition 2.2) and countably compact (or pseudocompact 
respectively), because in G the closure of every countable set is compact. 0 

2.4. Proposition. Suppose that X is a Hausdorff space which can be densely 
embedded in a connected Hausdorffspace Y in such a way that 
(1) Y\X is closed and discrete; 
(2) there is a bijection p between Y\X and some A c X such that A is closed and 
discrete in Y. 
Then X is T2-subconnected. 

Proof. For each z E Y\X identify z and ~ ( z ) .  The resulting quotient space Z is 
HaiisdorfE' and connected. It is evident that X can be condensed onto 2. c] 

2.5. Corollary. Let X be a Hausdorffrion-count¿bly compact space without open 
H-closed subspaces. I f  ñw(X)  6 w then X is T2-subconnected. 

Proof. It was proved in [ll] that X is countably connectifiable, i.e. it embeds 
densely into a connected Hausdorff space Y with Y \ X  countable. Fix any countably 
infinite closed discrete subset A of X .  Simple modifications of the construction i n  
Ill, Theorem 3.51 make the set A closed arid discrete in Y. Now use Proposition . -  
2.4. o 
non-empty open subsets of X is finite. 

Recall that a space X is called feebly 

We shall need the following fact from 

compact if every locally finite family of 
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2.6. Fact. (1) A countable space is H-closed iff it is feebly compact. 
(2) No countable space without isolated points is H-closed. 

2.7. Corollary. Every countable Hausdorff space X without isolated points is Tl- 
siibconriected. 

Proof. The topology of X can be weakened to a Hausdorff second countable 
topology v [2, Ch. 2, Problem 1481. It is evident that v does not have isolated points 
and hence (X, v) has no open 11-closed subsets by Fact 2.6. Now use Corollary 2.5. 
o 
2.8. Proposition. A countable space X is not H-closed if and only if it condenses 
onto a dense in itself space. 

Proof. Suppose that X condenses onto a dense in itself space Y. Since Y is 
countable it can not be H-closed by Fact 2.6. Since the property of being H-closed 
is preserved by continuous maps (4, Problem 3.12.5(b)], the space X can not be 
H-closed and we have established the sufficiency. 

If X is not H-closed, then let us consider two cases. 
Case I .  The set D of isolated points of X has a non-H-closed closure. Then 

c l (D)  is not feebly compact by Fact 2.6. Let { U n  : n w} be a locally finite family 
of non-empty open subsets of cl(D). Let 5, E U, í l  D for each n E w. The set 
E = (5, : n E w }  is closed, infinite and consists of isolated points of X. This means 
X is homeomorphic with X @ (w x w), where w is considered with the discrete 
topology. The space w x w condenses onto X x w so that X also condenses onto 
Y = X x w. Let 2 be any connected space with the underlying set w (see [11] for 
examples of such spaces). Evidently, Y condenses onto X x 2 and since the space 
2 is not H-closed, we can use Proposition 2.2 to conclude that X x 2 condenses 
onto a connected space which, of course, has no isolated points. The composition 
of these condensations now gives a condensation of X onto a dense in itself space. 

Case 2. The set K = c l (D)  is 11-closed. The space X being non-l1-closed, 
there is a locally finite family y = {U, : n E u} of non-empty open subsets of X. 
Only finitely many of them can intersect K, so we may assume U, c X\K for all 
72 E u. Choosing smaller sets if necessary we can make the family y disjoint (see 
(11, Lemma 2.11). 

The set X\K is dense in itself, so none of the Un’s  has isolated points. Hence 
for every n E w there exists a free open ultrafilter tn in X such that U,, E tn. It 
is clear that J, # tm, if n # rn. Fix an injection p : U -+ w and for every pair of 
different points z , y  E X pick disjoint open sets VX,, and V’,, in the following way: 

( i )  if 2 and y are not isolated, then V,,y and Vy,z are any disjoint open neigh- 
bourhoods of z and y respectively; 

(zi) if 5 E D and y $! D, then V,,, = {z}  U W ,  and V,,, = X\c1(VZ,,), where 
W E el,(,) does not contain y in its closure; 

(2;;) if x,y E D, tlien Vx,y = {z}  U U,(,, and V,,, = { y }  U 
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Let p be the topology generated by the subbase consisting of the sets Vz,y, Ify,= 
constructed for all pairs z , y  E X. It is clear that p is Hausdorff and that the space 
( X ,  p )  does not have isolated points which proves our Proposition in Case 2 as well. 
n 
U 

2.9. Theorem. A couritably infinite space X is 7'2-subconnected i f  and only i f  it 
is not H-closed. 

Proof. If X condenses onto a connected space Y, then Y can have no isolated 
points. Since Y is countably infinite, it is not H-closed by Fact 2.6. Therefore X i s  
not H-closed and we have proved the necessity. 

If X is not H-closed, then it condenses onto a dense in itself space Y by 
Proposition 2.8. Now use Corollary 2.7 to condense Y onto a connected space. 0 
2.10. Corollary. A countably infinite regular space is Hausdorff subconnected i f  
and only i f  it is not compact. 

2.11. Proposition. Let X be a a-cornpact Tychonoff totally disconnected space. 
Then X is not Td-subconnected. 

Proof. Let X = U { F ,  : n E u} where every F, is compact,. Each F, is totally 
disconnected and hence zero-dimensional. Assume that 'p : X t Y is a condensa- 
tion with Y regular. The subspace G,, = c ~ ( F , ~ )  i s  homeomorphic to F,, for each n 
and U{G,, : n E u} = Y ;  thus Y is a-compact and hence normal. The sets G, are 
zero-dimensional so by the countable sum theorem for the covering dimension [4, 
Theorem 7.2.11 the space Y is zero-dimensional too. 

2.12. Lemma. Let {C, : a E I }  be a family of  connected non-empty spaces. Let 
X = @ { C ,  : a E I } .  For each a E I ,  choose 2, E C, and let v be a connected 
topology on A = (2, : a E I } .  We define a topology p on X as follows: 
(i) I f  U A = 0, then U E p iff U E T ,  where T is the topology of the discrete suni 
on X. 
(ii) If U n A  # 0 ,  then U E p i f f U n A  E v and for each z, E U n  A, UnC, E T. 
Then ( X , p )  is connected and p c T. Furthermore, ( X , p )  is a T,-space, i f  ( X , T )  
and (A, u)  are Ti-spaces (Z = 2,3,3;). 

The proof is straightforward and left to the reader. CT] 

2.13. Definition. Say that a topological space is a CO-space i f  all its components 
are open. 

2.14. Theorem. (1) Let X be a Hausdorff CO-space with an infinite number of 
components. Then X i s  T2 -si~bcorinected. 
(2) If X is a 2'3- (Tyclionoff) CO-space witli at least 2" components then it is T3- 

Proof. It is clear that any CO-space is a discrete sum @ { C ,  : CK E B} of its 
components. Choose x u  E C, for each (Y E l3. Thc set 13 beirig infinite, there 

(T3+ -)subconnected. &-I 

5 



is a connected Hausdorff topology on A = {z, : a E B}. Now use Lemma 2.12 
to conclude that (1) holds. If IBI 2 2", then there exists a connected Tychonoff 
topology on A and hence we can use Lemma 2.12 once more to establish (2). 0 
2.15. Lemma. Let (X , . r )  be a regular (Tychonoff) space such that X = Y @ C, 
where 
(1) C is a connected subspace of X; 
(2) there exists a discrete family {U, : n E u} of non-empty open subsets of C; 
(3) Y = @{Ya : a E A } ,  where each Y, # 0 i s  connected and [AI < 2w. 
Then X is regular (Tychonoff) subconnected. 

Proof. Let m E w. For any f E {O, 1)" fix a non-empty open set Vj c U, in such 
a way that VrriV, = 0 i f f ,  g E {O, l}", f # g. It is possible because C is connected 
and infinite. Pick a point xf E Vj for each f E {O, 1)" and m E w. Let ya E Y, 
for all Q E A. It follows from (3)  that there exists an injection 'p : A -+ {O, 1)". We 
are going to construct a new topology p on X changing the original one only at the 
points y,. 

The base of p-open neighbourhoods at the point y, will consist of the sets 
W U U{Wk : k 2 m } ,  where W C Y, is a .r-open neighbourhood of y ,  and W k  E 
T ( z j t ,  Vjk), where f k  = y(a) t k  for all k 2 m. 

The space ( X , p )  is connected. Indeed, let O be a p-clopen subset containing 
C. Then ya E cl,(O) and consequently Y, C O for all (Y so that O,= X .  

To establish that (X, p) is regular (Tychonoff) we only need to prove regularity 
(the Tychonoff property) at every y,. Let O = W ü U{Wk : k 2 m} be a basic 
p-open neighbourhood of y,. Choose a .r-open neighbourhood W' of ya and .r-open 
neighbourhoods Wk of z j t  in such a way that ci,(W') c W and ciT.(W;) c W k  for 
all k 2 m. 

m}. We only 
need to show that y p  c¿,(O') for every /3 # a. Take any /? # a. There is a p E w 
such that (g = cp(P))tp # (f = cp(a))tp. Then U = Yp U U{V,rk : IC 2 p} is a 
p-neigliboiirhood of yp and U n O' = 0. This proves regularity of ( X , p )  in case 
(X, T) is regular. 

If (X, T) is a Tychonoff space, then there is a T-continuous function h : X -+ IR. 
such that h(y,) = 1 = h ( z f k )  and htX\O E O. It is straightforward that h is 
p-continuous and our lemma is proved. n 
2.16 .  Theorem. If ( X , T )  is a 2-3 (Tychonoff) CO-space with an infinite set of 
infinite components, then X is T3 -subconnected (T3 1 -subconnected respectively). 

Proof. If X has at least 2" components, then the result follows from the previous 
theorem. Thus we suppose that the number of components is less than 2". Let 
{ C, : 71 E u} be different non-trivial components of X and let C = U{ C, : n E w}.  
For each n E c3,  choose 2, E C, and sequences S ,  = { s , ~ , ~  : m E w}  and --yn = 
{V,,,,, : m E u }  such that 

- -  

Let us prove that cZ,(O') c O, where O' = IV' U U{Wk : k 



(i) Vm,n is open in X and zm,n E Vm,n C Cn; 
(ii) Vm,n n Vp,n = 0 if m # p; 
(iii) 2, 

-- 

UY, for all 71 E w; 
Such a selection is possible, because each set Cn is infinite. We define a new topology 
p on C as follows. A basic open neighbourhood of zn i s  of the forni: 

where k is a natural number, V c Cn i s  a .r-nciglibourhood of zn, and U, C. Vn,, 
is an open 7-neighbourhood of xn,m- 

The p-neighbourhoods of any z E C\{xn : n E w)  are defined to be its 7- 

neighbourhoods. d 

It is easy to see that the topology p differs from .r only at the points 2, and that 
for each n, 2n has alocal base of p-neighbourhoods which miss {zm}U{zm,k : k E w }  
for each m # n. 

Now fix a basic neighbourhood W = V U U{Um : m > k }  of the point z, for 
some n E w. Since C is regular, there exist .r-open sets V' and U& with 5, E V' c 
cZ,(V') c V and z , , ~  E U; c clr(Uk) c U, for all m 2 k .  It is immediate, that 
the p-closure of the p-open neighbourhood W' = V' U U{Uk  : m 2 k }  of the point 
2, is contained in W .  This proves regularity of (C,p) .  

I€ C is Tychonoff, then there is a .r-continuous function f : C -, R such that 
f(zn) = 1 = f(xn,m ) for all m 2 k and ft(C\W) = O. It i s  immediate, that f is 
p-continuous, so that (C, p) is Tychonoff if C is. 

Furthermore, a p-clopen subset íV of C would be a .r-clopen subset of C and 
hence W = U{C, : n E A} for some A c w.  Without loss of generality the set A 
could be assumed infinite (otherwise consider the 7-clopen set C\W). Since for each 
p-neighbourhood of any point zn E Cn meets all but finitely many 7-components 
Cm 1 it follows that 2; E w for each n E w. Thus W = C and this proves that 
(C,  p)  i s  connected. 

Consider the components {Y, : Q E A} of X\C. Now X = C @ Y ,  where 
Y = ${Y, : a! E A}. Let Un be a 7-open set with c C,,\(y,ü {x,}). It is clear 
that Un is p-open and the family {U, : n E w )  is p-discrete. Now apply Lemma 
2.15. o 

' 

2.17. Corollary. If X i s  a locally connected Ti-space with an infinite set of  infinite 
components, then X i s  T;-subconnected (i = 2,3,3$). 

Proof. Every locally connected space is a GO-space, so we may use Theorem 2.16. 
U 
2.18. Examples. (1) Let C, be the Cantor set for each CY E A. The space @{Cm : 
Q E A) is í''3-subcOnnected if and only if it is Tychonoff subconnccted and the latter 
occurs íff IAI 2 wl. It is Tz-subconnected iff IAI 2 w; 

7 
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(2) Let I, be the unit segment [O, 13 for each cy E A. The space @{I, : Q E A} is 
S3-subconnected if and only if IAi 2 w. 

Proof. If the set A i s  countable then Proposition 2.11 shows that X = ${C,  : 
Q E A} is not T3-subconnected. Suppose that IA] 3 wl. It suffices to construct a 
weaker connected topology on X when ]Al = w1. Indeed, if 1-41 > u1, then represent 
A as an infinite union of its subsets of cardinality q .  Introduce a weaker connected 
topology on the corresponding subsets of X and use Theorem 2.16. 

Without loss of generality we can asbUme that the index set A coincides with 
q .  Choose a subset {p, : a < w1) c [O, 11 such that pa # pp if Q # p. For each 
Q < w1 it is easy to construct a map fa : C, t [O, 11"' in such a way that 

(i) ra(fa(Ca)) = [O, l]", where r,(f)  = f t a  for all f E [O, 11"'; 
(ii) f, is an embeddmg for all cy < wl; 
(iii) g(P) = p, for any g E f a ( C o )  and P > u + 1. 
It is evident that fa(C,) n fp(Cp) = 0 if cy # P. The union of the maps fa 

is a condensation of X onto the subset C = U{f,(C,) : a < wl} of [O, 11"'. The 
subspace C i s  connected, because its projections cover all countable faces of [O, 13"' 
[9]. This proves that X is T,'-subconnected and (1) is established. 

To prove (2), observe that if A is finite, then ${Ia : a E A} is a compact 
disconnected space and hence is not 2'2-subconnected. If A i s  infinite, use Theorem 
2.16. c] 

We now turn to the case in which X has a finite number of components. 

2.19. Definition. Given a natural number n let us call a space X Hausdorff (resp. 
regular or Tychonoff) n-extendable if there exists a Rausdorff (resp. regular or 
Tychonoff) space Y such that X is a dense subspace of Y and IY\XI = n. 

2.20. Theorem. If a Hausdorff (regular or Tychonoff) space ( X ,  T) has a finite 
number of components { Ci : 1 < i < n}, then X is Hausdorff (regular or Tychonoff 
respectively) subconnected if and only if it is HausdorfT(resp. regular or Tychonoff) 
(n - 1)-extendable. 

Proof. The sufficiency is proved by induction on n. If we have a Hausdo& (resp. 
regular or Tychonoff) extension Y of the space X such that Y\X = (y1, . . . , yn-1}, 
then y, f Cj for some i , j .  Take any point x E X\C, and define the topology at x 
to be a 7-neighbourhood of x union with the trace of some neighbourhood of yf on 
X. The weaker topology thus defined has < (n  - 1) components and i s  Hausdorff 
(resp. regular or Tychonoff) (n - 2)-extendable. Eon- use the inductive hypothesis. 

For the necessity, suppose that (X,T)  has n components and is not (n - 1)- 
extendable. The proof i s  by induction cfn n. If n = 2 then X i s  H-closed (regular 
closed or compact, respectively) and soeach component of X i s  H-closed (regular 
closed or compact, respectively). However, if p i s  some Hausdorff (regular or Ty- 
chonoff) topology on X with p C T ?  then each 7-component of X with the relative 
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p-topology is still H-closed (regular closed or compact, respectively) because all 
these properties are preserved by continuous maps. Thus (X, p) is not connected. 

Now suppose that the result is true for any space with k components, and 
suppose that X has ( k  + 1) components and is not k-extendable withn the class of 
TI-spaces, i = 2,3,3$. If there is a weaker connected T, topology v on X, then one 
of the r-components C, of X is not v-closed; let z E cl,(C,) fl Ci. Define a new 
topology p on X by: 

(i) If x 6 U, then U E p iff U E r. 
(ii) Open p-neighbourhoods of 5 are of the form U n (Cl U C,), where U E v. 
Clearly, u C p C r and ( X , p )  is a T,-space with k components. Now suppose 

that ( X , p )  has a Y,-extension ( Z , [ )  with IZ\Xl = k - 1. Change the topology 
[ at the point x by defining the new base of open neighbourhoods of x to be its 
.r-neighbourhoods. A routine verification shows that the resulting topology C on 2 
is TI and (2, () is a ( k  - 1)-extension of ( X ,  r). 

If i E {2.3}, consider the traces of the p-open neighbourhoods of 2 on C,. 
They form a free r-open (resp. regular r-open) filter which is contained in some 
non-convergent .r-open (resp. regular r-open) ultrafilter 3 on ( X ,  7 ) .  However, no 
point of Z\X is a limit point of F (neither in ( nor in () because Z is a T,-extension 
of (X, p).  Consequently, we c m  adjoin the filter 3 to 2 as a new point in a standard 
way obtaining thus a k-extension of ( X ,  7) (with the necessary axiom of separation) 
which is a contradiction. 

If we consider the Tychonoff case, then it suffices to prove that (2, C) is not 
compact. But the traces of the p-open neighbourhoods of x on C, form a regular 
open filter on (2, C), which, since it has empty intersection, can have no limit. Hence 
(2, C) is at least 1-extendable. But this extension would give a k-extension of (X, 7) 

and we have a contradiction in this case as well. 
Thus, for any i = 2,3,3$ we may apply the inductive hypothesis, concluding 

that (X, p) is not T,-subconnected, which contradicts the existence of the connected 
T,-topology v on X. ü 
2.21.  Corollary. If a Hausdod  (regular) space X has a finite number n of com- 
ponents then X is Hausdo& (regular) subconnected if and only if it has at least 
(n - i) open (regular open) ultrafilters. 

2.22. Proposition. Let (X, r) be a separable metrizable non-compact space. Then 
X admits a weaker separable metrizable topology p which is nowhere locally com- 
pact. (In particular, (X, p) has no open compact subsets). 

Proof. It si;ffices to define a condensation g : ( X , r )  3 Y C I” such that both 
Y and I”\Y are dense in I”. Here I = [0,1] is the unit segment with its natural 
topology. Identifying X and Y we obtain a weaker separablomctrizable topology 
p on X which is nowhere locally compact. 

Since ( X ,  r) is not compact, there exists an infinite closed discrete subset K = 
(5, : n E u }  of X with 2, # xm for n # rn. Let Choose two disjoint countable 

4 
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dense subsets S = {s, : n E w} and T = { t ,  : n E u}  of (O: 11". Obviously, both S 
and T are dense in I". 

For every n E w we will define a continuous function gn : 2 + I satisfying 

where p, : I" --t I, is the projection onto the n-th factor In. 
Let 23 be a countable base in X such that (¿rn KI < 1 for any U E 23. Denote 

by P the family of all pai rs  (U, V) of elements of B such that Ü fl 7 = 0 and let 
P = {P,  : n E w} be a faithful enumeration of eleroents of P. 

Now for every n E w construct a function gn which satisfies (*) and also 

if Pn = (U, V) and Ü n K = 0 = Vn K 
then gn(U) = {O} and gn(V) = (1); 

if only one of t,he sets U, V intersects K, say Ü n K = { z i } ,  
-- (**I 

then gn(U) = {gn(zi)} = {pn(si)} and gn(V) = {O}. 

If Ü and both intersect K ,  then g, is defined to satis% (*). That such 
function gn exists, is a simple consequence of Tietze's theorem. The functions gn 
having been constructed for all n E w let g = A{g, : n E w} be the diagonal 
product of g,'s. Clearly, g is a continuous map of 2 to I". From (*) it follows that 
g(zn)  = s n  and g(y,) = t ,  for all n E W, that is g ( K )  = S. ki particular, g(X) is 
dense in I". Let us show that T C Iw\g (X) .  

If x E X\K, then there is a pair P, = (V,V) E P such that z E U and 
U fl I( = 0 = vn K. Therefore gn(5) = p,(g(z)) = O while p,(T) 9 O so that 
g (z )  $ T .  Thus, both sets g ( X )  and 
P \ g ( X )  are dense in I". 

It remains to verify that the mapping g i s  one-to-one. Let z,y E X \ K .  There 
exist U, V E 23 such that z E U, y E V and fl v = 0, Ü fl K = 0 = v fl K. Then 
( U , V )  = P, for some n and gn(z) = O, g,(y) = 1 by (**), that is g(z)  # g(y). If 
z E K and y $ I(, then there exist P, = (U, V) such that z E U, y E V C v C 
X\K. By (**) we have gn(y)  = O # gn(z)  because gn(x)  E p,(S) O. Therefore 

Finally, if both x and y are in K, say x = zm, y = z n ,  rn # n, then g (z )  = sm 

- 

If 5 = x, E K then g(z)  E S C I"\T. 

9 b )  # g b > *  

and g(y) = s, and the conclusion follows since sm # sn.  c] 
2.23. Remark. In 2.22 we have proved even more: given a countably infinite closed 
discrete subspace K of (X, T ) ,  the set I( can be made dense in (X, p).  

2.24. Theorem. A regular disconnected space X with a countable network is Tz- 
subconnected if and only if i t  i s  not compact. 

Proof. We need to prove only the sufficiency. If X is not compact, there exists 
a discrete family {U, : n E w} of non-empty open subsets of X. Choose a point 

s 
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x, E Un for all n E w. Let f o  be a continuous function on S with f o ( 2 , )  = n for 
each n E u. Firid a family { fn : n = i , 2 .  . . . I  of real-valued continuous functions on 
X which separates the points of X - it exists because X has a countable network. 
Now let f = A{fn : n E u} be the diagonal product of f n ’ s .  The space Y = f (X)  
is second countable and X condenses onto Y .  Let po be the projection of Y onto 
the O-th coordinate. It is clear that po(f(z,)) = n, so that po i s  an unbounded 
real-valued continuous function on Y. Hence Y is not compact and we may use 
Proposition 2.22 to condense Y onto a second countable space 2 without open 
compact subsets. Finally, apply Corollary 2.5 to conclude that 2 and hence X has 
a weaker connected Hausdofi topology. 

2.25. Corollary. A reodar disconnected second countable space is T2-subconnec- 
ted iff it is not compact. 

2.26. Remark. Theorem 2.24 gives another proof of Corollary 2.10. However, it  
does not cover Theorem 2.9 because it says nothing about the non-regular case. 
The interesting question then arises as to whether a Hausdorff space with countable 
network is T2-subconnected as long as i t  is not H-closed. 

2.27. Proposition.. Let ( X ,  r) be a second countable T3-space with at least one 
non-compact component. Then X is T3-subconnected. 

Proof. Let C be a non-compact component of X .  There exists a countably infinite 
K C C which is closed and discrete in X. Use Proposition 2.22 and remark 2.23 to 
find a weaker separable metrizable topology p on X with K dense in ( X , p ) .  From 
K C C it follows that C is a dense connected subspace of ( X , p ) ,  so that ( X , p )  is 
connected. 0 
2.28. Lemma. Let (X, 7) be a second countable T3-space which has an infinite set 
of non-trivial components {C, : n E w }  such that cZ(U{C, : n E u})  is not compact. 
Then ( X , T )  can be condensed onto a second countable T3-space with at least one 
noz-compact component. 

Proof. If ( X , r )  has a non-compact component then we are done; hence suppose 
that all components of ( X , T )  are compact. Since ( X , T )  is second countable and 
cl(U{C, : n E u } )  i s  not compact, there exists an infinite A c w and x, E C, for 
each n E A such that the set E = {zn : n E A} is closed and discrete in X. 

There exists a discrete family (U, : n E A} of open subsets of X such that 
LTn n E = {zn}, and since each C, is connected and non-trivial, it follows that 
U n  n C, is infinite (in fact, has cardinality 2”). For each n E A, we choose a disjoint 
family {Vmn : m E w }  of open subsets of X and a set { S m n  : m E u} C X such that 
(i) V m n  C Un for dl n E A, m E W ;  

(ii) Vmn n Vpn = 0 if p # m; 
(iii) Smn E V m n  n Cn for all n E A, m E u. 

define a new topology- p on X as follows: 

. 

Let S k  = { s k ,  : n E A}. Clearly S k  is closed and discrete for any k E u. We 
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(iv) If z # E then U is a p-neighbourhood of x if and only if U is a 7-neighbourhood 
of 5. 
(v) U is a p-neighbourhood of xn E E if Ií = V U u{V' : r 2 i } ,  where 1' i s  a 
T-neighbourhood of zn and Vr is an open subset of X such that S n r  E Vr C v n r  for 
every r 2 i. 

It is easy to see that collectionwise normality of (X, T )  enables one to separate 
Sk and SI for any distinct k ,  I E w and whence it follows that xk and xi have disjoint 
p-open neighbourhoods. Thus, the space (X, p)  i s  HausdoxB. Furthermore, since 
( X ,  T) is regular and S, is discrete, each set Vr contains a closed neighbourhood of 
snr and so ( X ,  p) is regular. Finally, the set C = ü{C, : n E A} is connected but not 
compact since for each n E A it is possible to choose E (C, fl U n )  \ { Smn : m E x }  
and then the set {zn : n E A} is i dn i t e  closed and discrete in ( X ,  p) and lies in C. 

The space ( X , p )  is not necessarily second countable. But it has a countable 
network so that it is possible to condense it onto a second countable regular space Y 
in exactly the same way as was done at the beginning of the proof of Theorem 2.24 
to achieve the image C' of C to be closed and non-compact. Now the component 
of Y containing C' will be non-compact and we are done. 

2.29. Theorem. Let ( X , T )  be a o-connected (that is, the family of the com- 
ponents of X is countable), disconnected, second countable T3-space. Then X is 
T3-subconnected if an 1 only if the closure of the union ofits non-trivial components 
is not compact. 

Proof. The sufficiency follows from Proposition 2.27 and Lemma 2.28. The necessi- 
ty follows from the fact that if the closure D of the union of non-trivial compoxnts 
is compact, then it must be compact and hence closed in any weaker regular toro;- 

ogy p. If D coincides with X ,  the X i s  a compact disconnected space and hence 
it is not even T2-subconnected. Therefore we may assume that X\D i s  non-empty. 
It is obvious, that X\D is open, countable, and thus zero-dimensional in p. Thus 
( X , p )  is not connected. 

2.30. Corollary. A second countable locally connected regular space X is TJ-- 
chonoff subconnected if and only if i t  has an d i n i t e  number of nontrivial compo- 
nents or has a non-compact component. 

It i s  clear that subconnectedness is preserved by arbitrary products and by 
strengthening the topology. The following proposition shows that the free topolog- 
ical group functors preserve it as well. 

2.31. Proposition. Let X be a Tychonoffsubconnected space, 1x1 > 1. Then 
( i ) ihe  free Graev topological group F r ( X )  and the free Graev abelian topological 
gro'up A r ( X )  admit a weaker connected Hausdodf topological group topology; 
(2) the free topological group F ( X )  and the free abelian topological group A ( X )  
are T3 + -subconnected. 
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Proof. Let cp : X -t Y be a condensation of X onto a connected Tychonoff space 
Y. 
(1) Denote by (j a continuous homomorphism of F r ( X )  to Fr(Y) extending 9 .  It 
i s  clear that $ is an algebraic isomorphism between these groups. By Fact A) of [5, 
Section 61, the group F'(Y) is connected, which proves our claim about the group 
F r ( X ) .  The same reasoning applies to the group Ar(X) and gives a continuous 
ono-to-one homomorphism .ic, : Ar(X) + Ar(Y)  extending the mapping cp. The 
same Fact A) of [5, Section 61 guwantees the connectedness of the group Ar(Y). 
(2) The problem here is that the groups F ( Y )  and A(Y) are not connected, so ihe 
proof is not so straightforward as in (1). For every element g E F ( Y ) ,  let n = 2(g) 
be the length of g,  that is, the number of letters in the irreducible word g written in 
the alphabet Y UY-'. If g = y:' ...y? with y1 ,..., yn E Y and ~ 1 ,  ..., E, E {-l,+l}, 
denote by I+(g) (respectively Z-(g)) the number of indices i 6 n such that E* = 1 
(resp., = -1). Put 

G = (9 E F(Y) : I+(g) = Z-(g)}. 

It is clear that G i s  a closed subgroup of F ( Y )  and the quotient group F ( Y ) / G  is 
topologically isomorphic to the discrete group of integers Z. Indeed, let p : Y -+ Z 
be a constant mapping defined by p(y) = 1 for each y E Y .  Extend p to a continuous 
homomorphism 3 : F ( Y )  -f Z. Then ker(@)  = G, which implies the facts that G is 
closed in F ( Y )  and F ( Y ) / G  E Z. Since Y is connected, Assertion 1.1 of [lo] implies 
that the group G is connected (to see that directly, one c m  use natural "product" 
mappings in+ : YZn + G d e b e d  by i,,,(yl,y2 .....yz,) = yi y;' . ... . $2 for 
each point y = (yr,yz, ..., y2,) E YZn, \\-here E = ( ~ 1 . ~ 2 .  ..., €2,) E i-1. +1}2". to 
cover G by a countable family of connected subspaces containing the identity of C; 
Thus, the space F ( Y )  i s  the free topological sum oi a countably infinite family of 
connected subspaces homeomorphic to G. Apply now Theorem 2.16 to conclude 
that F ( Y )  is T,+-subconnected. Since p is a condensation of F ( X )  onto F ( Y ) ,  the 
space F ( X )  is also T, + -subconnected. 

An analogous reasoning shows that the space -4(X) is T,+-subconnected. 0 
It is well known that connectedness is innriarit under any continuous map. 

The following examples show that the subconnectedness can be 
good a map as one can imagine. 

2.32. Examples. (i) If i E {2,3,3$} then Si-subconnectedness 
by condensations; 
(2) If i E {2,3,35} then T,-subconnectedness is not preserved by 
maps; 

destroyed by as 

is not preserved 

open two-to-one 

(3) Tychonoff ( A d  regular) subconnectedness ir not preserved by perfect open maps. 

Proof. A discrete space of power continuum i s  Tychonoff subconnected. However, 
it is condensable onto the discrete union of two lrrtit segments, which i s  not Hausdorff 
subconnected being compact and disconnected. This proves (1). 

4 
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To establish (2), observe that the set 

with the topology induced from the plane i s  Tychonoff subconnected by Corollary 
2.21. The projection of X onto the z-axis yields a two-to-one open map of A- onto 
[O, 11 U [2,3] which is not HausdorfE subconnected. Consequently, we have proved 

To prove (3) consider the projection map of ;Y = [0,1] x w onto w, where 
w has the discrete topology. It is open and perfect. The space X is Tychonoff 
subconnected by Corollary 2.17, while w is not because it i s  countable. 

Finally we look at the spaces which have an infinite subconnected subspace. As 
one would expect, this class turns out to be much wider than the class of subcon- 
nected spaces. For example, every infinite HausdorfE space has an infinite discrete 
and hence T2-subconnected subspace. Hence we only consider Tychonoff spaces. 

2.33. Proposition. The following conditions are equivalent for every Tychonoff 
space X :  
(1) X has an i n f h t e  Tychonoff subconnected subspace; 
(2) X has a subspace which c m  be condensed onto the unit segment [O, 11; 
(3) X has a subspace that maps continuously onto [O, 11; 
(4) X has a subspace that maps continuously onto a.n infinite connected Tychonoff 
space. 

Proof. The implications (2) (3) ==+ (4) are evident. If a subspace of X maps 
onto a connected space Y, then choose a point in the inverse image of each point 
of Y. The resulting subspace condenses onto Y and the implication (4) (1) is 
established. 

Now let f : 2 -f Y be a condensation, where 2 c X and Y is an infinite 
connected Tychonoff space. Take different points y 0 , y l  E Y and a map h : Y 3 

[0,1] with h(y0) = O and h(y1) = 1. Since Y is connected we have h(Y) = [0,1]. 
For every t E [O, I] take a point zt E f - ' ( h - ' ( t ) ) .  The set { z t  : t E (O, 11) condenses 
onto [O, 11 and we have established (1) 

2.34. Proposition. The following classes of spaces have infinite Tychonoff sub- 
connected subspaces: 
(1) Any Tychonoflspace X with i n d ( X )  > O; 
(2) any compact non-scattered space; 
(3) any space X which has a discrete subspace of power continuxm; 
(4)  any Cech-complete space without isobted points. 

Proof. (1) Take a point z E X such th2 '  the dimension at it is greater than zero. 
This means there is a U E I ( z , X )  such that there i s  no clopen set containing r 
and lying inside U. Pick a continuous function f : X -+ [ O , l ]  with f(z) = 1 and 

(2). 

(2). 0 
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f t X \ U  E O. Then f ( X )  = [ O , i ] ,  because if t E [O, i ] \f(X),  then W = f- ' ([ t , l])  
would be a clopen set such that z E W C U which is a contradiction. Nom use 
Proposition 2.33( 3). 

Every compact non-scattered space maps onto the unit segment [a], and there- 
fore (2) holds; (3) i s  clear and (4) holds because any Cech-complete space without 
isolated points contains a non-scattered compact subspace and the latter maps con- 
tinuousiy onto [0,1]. 0 

Recall, that a Luzin space is a uncountable space without isolated points such 
that its nowhere dense sets are countable. It is known that under CH there are 
Luzin subsets of the reals [3],(6] and that there are no Luzin spaces under Martin's 
axiom and the negation of the continuum hypothesis [3],[11]. 

2.35. Proposition. Let X be a hereditarily separable Luzin space. Then X con- 
tü ins no Tychonoff subconnected subspace. 

Proof. Suppose that Y C X and f : Y -+ [0,1] is a condensation. The set Y is 
uncountable, so that Y\A is dense in an open set of X for some countable A c Y .  
The set Y\A is evidently a Luzin set, which condenses onto [ ü , l ] \ f ( A ) .  Choose 
z countable B c Y\A c B. It follows from the definition of a Luzin set, that 
(Y\A)\W i s  countable for every open W 2 B. Therefore, [O,l]\U is countable 
for each open U 3 f ( A )  U f ( B ) .  But this is impossible because f ( A )  ü f ( B )  is of 
measure zero and hence can be covered by an open subset U of ! O , i ]  of measure 
< $; then [O,l]\U has measure 2 so it can not be countable. 0 

3. Unsolved problems. As usual, these are more numerous than those we 
have solved. The topic seems to be new, and the problems below might be easy or 
difficult, but all of them seem to require some new approach. 

3.1. Problem. Find an inner characterization of the regular second countable 
Tychonoff subconnected spaces. 

3.2. Problem. Find an inner characterization of the Hausdod second countable 
Hausdorff su  bconnected spaces. 

3.3. Problem. Is it true that a Hausdorff second countable space is S2-subconnec- 
ted iff it is non-H-closed? 

3.4. Problem. Are there Luzin spaces which condense onto the unit segment? 

3.5. Problem. Let X be a compact space of cardinality 2 2". Is it true in Z F C  
that X contains an infinite Tychonoff subconnected subspace? 

3.6. Problem. Let X be a countably compact swce of cardinality 2 2". Is it true 
in Z F C  that X contains an infinite Tychonoff subconnected subspace? 

3.7. Problem. Let X be a pseudocompact space of cardinality 2 2". Is it  tree in 
ZFC that X contains an infinite Tychonoff subconnected subspace? 
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3.8. Problem. Is there in ZFC a Tychonoff space of cardinality 2 2" with no 
infinite T ~ z . ~ o R o ~ ~  subconnected subspaces? 

3.9. Problem. Let X be a Tychonoff subconnected space. Is i t  true, that the 
Maxkoff f+e topological group over X has a weaker connected group topology? 

3.10. Problem. Is it true in ZFC that the discrete sum of w1 copies of the Cantor 
set condenses onto a connected compact space? 

3.11. Problem. Is  Tychonoff subconnectedness invariant with respect to pedect 
&nite-to-one maps? 

3.12. Problem. Ls Ñausdorff subconnectedness invar iant  with respect to  perfect 
finite-to-one maps? 
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