

Universidad Autónoma Metropolitana Unidad Iztapalapa

Ciencias Básicas e Ingeniería

Posgrado en Ciencias (Física)

Expresión analítica de la curva de energía potencial de la molécula de HF, cálculo de estados rovibracionales de HF, DF y TF

Tesis para obtener el grado de: Maestra en Ciencias (Física)

PRESENTA: LAURA ESTEFANIA ANGELES GANTES 2193803871 angeles.gantes.laura.e@gmail.com

Directores de tesis Asesor: Dr. Horacio Olivares Pilón Co-asesor: Dr. Salvador Antonio Cruz Jiménez

JURADO

Presidente: Dr. Alexander Turbiner Rosenbaum Secretario: Dr. Horacio Olivares Pilón Vocal: Dr. Adrián Mauricio Escobar Ruiz

Iztapalapa, CDMX, 28 de abril de 2022

Resumen

Dentro de la aproximación de Born-Oppenheimer, se construye una expresión analítica de la curva de energía potencial para el estado base $X^1\Sigma^+$ de la molécula diatómica de fluoruro de hidrógeno (HF), para todo el dominio de distancias internucleares. La expresión analítica para la curva de energía potencial esta basada en aproximantes de Padé que reproducen correctamente los comportamientos asintóticos para pequeñas y grandes distancias internucleares. A través del método de malla de Lagrange, los estados vibracionales, rotacionales y rovibracionales de esta molécula, se obtienen al resolver la ecuación de Schrödinger para el movimiento nuclear, encontrado 21, 56 y 724 estados, respectivamente. En general, los resultados están en muy buen acuerdo con las soluciones numéricas y datos experimentales, con 4-5 cifras significativas en coincidencia.

La metodología desarrollada permite extender el estudio a los sistemas isotopólogos: fluoruro de deuterio (DF) y fluoruro de tritio (TF). Se obtuvieron 29 y 35 estados vibracionales, 77 y 93 rotacionales y un total de 1377 y 1967 rovibracionales para DF y TF, respectivamente.

Agradecimientos

Agradezco a mi asesor el Dr. Horacio Olivares Pilón por haber dirigido este trabajo. Por su dedicación, apoyo y paciencia durante todo el proceso. Por ser un ejemplo de la enseñanza de la física con su interpretación de ella y la manera de compartir su conocimiento.

Al Dr. Salvador Cruz Jiménez por sus comentarios, su amabilidad y esmero durante la revisión de la tesis.

Al Dr. Alexander Turbiner Rosenbaum por el tiempo dedicado para las discusiones de esta tesis, por compartir su conocimiento, sus sugerencias y consejos.

Al Dr. Adrián Escobar Ruiz por sus comentarios y reflexiones que enriquecieron este trabajo.

Agradezco a la Universidad Autónoma Metropolitana, mi casa de estudios, por todas las facilidades brindadas durante la licenciatura y maestría.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) por la beca otorgada durante mis estudios.

Agradezco a mi mamá Laura Gantes y hermano Mauricio Angeles por su amor, apoyo incondicional y comprensión. Por ser mi mayor ejemplo, inspiración y motivación.

Al Mtro. Jaime Grabinsky por todas sus enseñanzas y charlas, por mostrarme una perspectiva diferente de la vida. Por creer en mis capacidades personales y profesionales.

A mis amigos Josemaría, Estefania, Jorge, Cristian, Fernanda, Francisco y Guadalupe por recorrer el camino conmigo, impulsarme a ser mejor, por su apoyo y todo lo compartido.

Índice general

1.	Introducción	1
2.	 Moléculas diatómicas 2.1. Molécula diatómica	5 5 5 6
3.	Curva de energía potencial del fluoruro de hidrógeno (HF) 3.1. Límites asintóticos 3.1.1. Distancias internucleares pequeñas 3.1.2. Distancias internucleares grandes 3.1.2. Distancias internucleares grandes 3.2. Curva de energía potencial 3.2.1. Aproximante de Padé de dos puntos 3.2.2. Expresión analítica de la curva de energía potencial 3.2.3. Comparación de resultados con el potencial de Morse	11 12 13 14 15 16 21
4.	Movimiento nuclear4.1. Hamiltoniano nuclear4.2. Método de malla de Lagrange4.2.1. Ecuación de Schrödinger unidimensional4.2.2. Dominio para $x \in (0, \infty)$ 4.2.3. Escalamiento de la Malla	 23 23 24 25 27 28
5.	Molécula de fluoruro de hidrógeno (HF) 5.1. El estado base $X^1\Sigma^+$ de la molécula de HF	29 29
6.	Molécula de fluoruro de deuterio (DF) 6.1. El estado base $X^1\Sigma^+$ de la molécula de DF	33 33
7.	Molécula de fluoruro de tritio (TF) 7.1. Estados rovibracionales de la molécula de TF	37 37
8.	Conclusiones y Perspectivas	41

Apéndice A. Estados rovibracionales de HF	43
Apéndice B. Estados rovibracionales de DF	45
Apéndice C. Estados rovibracionales de TF	47
Lista de Figuras	49
Lista de Tablas	51
Bibliografía	53

Introducción

Una molécula es el sistema que resulta de la agregación de dos o más átomos que llegan a formar una estructura estable a través de las interacciones coulombianas entre sus constituyentes (núcleos y electrones). En general, en una molécula compuesta de Nátomos se tiene un sistema constituido por N núcleos y n electrones con 3N grados de libertad ($\mathcal{N} = N + n$). Para obtener el espectro de energía de la molécula es necesario resolver la ecuación de Schrödinger estacionaria del sistema

$$\mathcal{H}\psi = E\psi,\tag{1.1}$$

donde el hamiltoniano molecular $\hat{\mathcal{H}}$ en unidades gaussianas tiene la forma

$$\hat{\mathcal{H}} = -\frac{\hbar^2}{2m_e} \sum_{i}^{n} \nabla_i^2 - \frac{\hbar^2}{2} \sum_{a}^{N} \frac{1}{m_a} \nabla_a^2 + \sum_{i} \sum_{j>i} \frac{e^2}{r_{ij}} + \sum_{a} \sum_{b>a} \frac{Z_a Z_b e^2}{r_{ab}} - \sum_{a} \sum_{i} \frac{Z_a e^2}{r_{ia}},$$
(1.2)

con *i* y *j* denotando a los electrones, mientras que *a* y *b* a los núcleos. En (1.2) los dos primeros términos son los operadores de energía cinética: el primero de ellos corresponde a los *n* electrones con masa m_e y el segundo a los *N* núcleos, con m_a la masa del núcleo *a*-ésimo. El tercer término describe la energía de repulsión entre electrones con carga *e* y r_{ij} la distancia entre los electrones *i* y *j*. El penúltimo término corresponde a la energía potencial de repulsión entre los núcleos *a* y *b*, con números atómicos Z_a y Z_b , respectivamente y r_{ab} la distancia entre ellos. Finalmente, el último término es la energía potencial de atracción entre los electrones y núcleos, con r_{ia} la distancia entre el *i*-ésimo electrón y el núcleo *a*. Un ejemplo de una molécula simple (H₂) se presenta en la Figura 1.1, donde se muestran las distancias entre los núcleos *a* y *b*, entre los electrones 1 y 2, y entre ellos.

La complejidad de la ecuación de Schrödinger (1.1) radica en el hecho de que no puede ser resuelta de forma analítica, incluso para las moléculas más sencillas. Para simplificar este problema, una alternativa es adoptar la **aproximación de Born-Oppenheimer** [1], que consiste en la separación del movimiento electrónico y nuclear. Esta aproximación

Figura 1.1: Molécula de H₂: ejemplo esquemático de las etiquetas para una molécula simple, donde los núcleos están denotados por $a \ y \ b \ y$ los electrones por 1 y 2. r_{12} es la distancia entre los electrones 1 y 2, r_{ab} es la distancia entre los núcleos $a \ y \ b$. $r_{a1} \ y \ r_{a2}$ son las distancias entre el núcleo $a \ y$ los electrones 1 y 2, respectivamente. Similarmente $r_{b1} \ y \ r_{b2}$ son las distancias entre el núcleo $b \ y$ los electrones 1 y 2, respectivamente.

está justificada por la gran diferencia entre las masas de los núcleos y electrones, lo cual implica que los electrones se muevan con mayor rapidez que los núcleos. En esta aproximación, la energía cinética nuclear se considera despreciable y el hamiltoniano electrónico $\hat{H}_{\rm el}$ es

$$\hat{H}_{\rm el} = -\frac{\hbar^2}{2m_e} \sum_{i}^{n} \nabla_i^2 + \sum_{i} \sum_{j>i} \frac{e^2}{r_{ij}} + \sum_{a} \sum_{b>a} \frac{Z_a Z_b e^2}{r_{ab}} - \sum_{a} \sum_{i} \frac{Z_a e^2}{r_{ia}},$$
(1.3)

donde la dependencia nuclear aparece implícitamente en el término de repulsión entre núcleos. Para resolver la ecuación de Schrödinger correspondiente al sistema de n electrones se fijan las posiciones nucleares, permitiendo obtener la energía electrónica del sistema. Repitiendo el procedimiento para diferentes arreglos nucleares se obtiene la **superficie de energía potencial** de la molécula. Podemos destacar que i) en el caso unidimensional la superficie se reduce a una curva, la **curva de energía potencial** y ii) dentro de la aproximación de Born-Oppenheimer, los sistemas isotopólogos (moléculas en las cuales al menos uno de los átomos que la conforman es sustituido por uno de sus isótopos, es decir el mismo elemento pero cuyo núcleo tienen una cantidad diferente de neutrones), como ejemplo H₂, D₂, T₂, HD, HT, DT, entre otras, todas quedan definidas por la misma curva de energía potencial.

El caso más simple de una molécula es aquella que contiene solo dos átomos, es decir, una **molécula diatómica**. Cuando los átomos son del mismo elemento, estas son llamadas **moléculas diatómicas homonucleares**. Algunos elementos que forman moléculas diatómicas homonucleares son hidrógeno (H₂), nitrógeno (N₂), oxígeno (O₂), flúor (F₂), cloro (Cl₂), bromo (Br₂), yodo (I₂), entre otros. Una molécula diatómica también puede contener átomos de diferentes elementos, a este tipo de moléculas se les conoce como **moléculas diatómicas heteronucleares**. Como ejemplos se tienen al cloruro de hidrógeno (HCl) e hidruro de litio (LiH), etcétera.

En el estudio de moléculas diatómicas, dentro de la aproximación de Born-Oppenheimer,

la posición de los núcleos queda determinada por la distancia relativa R entre ellos. En este caso la superficie de energía potencial solo depende del parámetro R, obteniendo la denominada **curva de energía potencial**. Dicha curva resulta de la solución del movimiento electrónico de (1.3) como función de la distancia internuclear R y para la cual se han desarrollado una gran cantidad de métodos numéricos. No obstante, el cálculo de la curva energía potencial es un problema que aumenta su complejidad con el incremento del número de electrones, al requerir de un mayor tiempo y poder computacional. Una alternativa para el estudio de la curva de energía potencial es el método de Rydberg-Klein-Rees [2, 3, 4] (RKR), con el que a partir de datos espectroscópicos se determinan los puntos de retorno clásicos de los niveles de energía vibracionales-rotacionales.

En la práctica a partir de los resultados numéricos o mediante el uso del método RKR se obtienen puntos discretos de la curva de energía potencial. Con el objetivo de obtener una representación analítica de la curva de potencial se han utilizando potenciales fenomenológicos con parámetros libres, como ejemplo el *oscilador armónico*, los *potenciales de Lennard-Jones, Morse*, etcétera (ver más adelante). Los parámetros libres se fijan haciendo un ajuste con resultados numéricos o experimentales.

Al igual que para los sistemas atómicos, existe una clasificación para los estados de las moléculas diatómicas. La clasificación se basa en el hecho de que el campo eléctrico de los núcleos tiene una simetría axial alrededor de un eje que pasa a través de los dos núcleos y otra simetría debida a la reflexión en cualquier plano que pase por este eje [5]. Además se consideran convenciones utilizadas en espectroscopia.

- Con la simetría axial alrededor del eje, la proyección del momento angular orbital sobre este eje se conserva y se pueden clasificar los niveles electrónicos de las moléculas de acuerdo con los valores de esta proyección. El valor absoluto de esta proyección se denota por Λ y toma valores de 0, 1, 2, · · · . Los términos con diferentes valores de Λ = 0, 1, 2 son denotados por Σ, Π, Δ.
- Cada estado electrónico de la molécula se caracteriza por el espín total S de todos los electrones en la molécula. Como en átomos, la multiplicidad del término (2S+1), es escrita como un superíndice antes de la letra correspondiente al término de simetría axial.
- Para la etiqueta debida a la reflexión en cualquier plano que pase por el eje de simetría, en el caso de que Σ = 0, se tiene una doble reflexión en el mismo plano, la función de onda solo puede ser multiplicada por ±1, distinguiendo los términos Σ⁺ que no se modifican en la reflexión y Σ⁻ cuya función de onda cambia de signo.
- En espectroscopia se utiliza como prefijo del estado base de una molécula al símbolo X [1].

La molécula de HF tiene Λ y Sigual a cero, entonces su estado base se denota por $X^1\Sigma^+.$

En este trabajo se considera el estado base $X^1\Sigma^+$ del fluoruro de hidrógeno (HF), una molécula diatómica compuesta de un átomo de hidrógeno y uno de flúor. La molécula de fluoruro de hidrógeno HF es ampliamente utilizada en procesos industriales, como en la petroquímica y la industria vidriera. Su estudio en sí ya es interesante al ser una molécula en la que es necesario el análisis de la interacción entre diez electrones y dos núcleos. Al día de hoy la obtención de la curva de energía potencial de esta molécula mediante cálculos de primeros principios sigue siendo un gran reto [6, 7, 8, 9, 10]. La desviación absoluta media entre los niveles de energía vibracionales experimentales y teóricos es ~ 4×10^{-4} Hartrees [11]. Con el ya mencionado método RKR, los puntos discretos de dicha curva han sido obtenidos para todos los estados vibracionales del estado base $X^1\Sigma^+$ [6]. Es a partir de estos valores discretos que se construye una expresión analítica para el estado base de la curva de energía potencial E(R) para todo el dominio de distancias internucleares $R \in (0, \infty)$.

La expresión para E(R) está basada en el uso de un *aproximante de Padé de dos puntos*, como se ha desarrollado en [12, 13].

Con la expresión analítica de la curva de energía potencial, la ecuación de Schrödinger del movimiento nuclear es resuelta utilizando el *método de malla de Lagrange* [14], lo que permite obtener el espectro rovibracional de la molécula de HF.

Con la presente metodología y de manera muy simple al modificar la masa reducida en la ecuación de Schrödinger del movimiento nuclear, es posible extender el estudio a los sistemas isotopólogos de HF, las moléculas diatómicas de fluoruro de deuterio (DF) y fluoruro de tritio (TF).

En todo el trabajo, excepto en la sección 2.3, se utilizarán unidades atómicas, donde $\hbar = 1$, e = 1 y $m_e = 1$. La unidad atómica de la energía es el *Hartree* y la de longitud el *Bohr*.

1 Hartree =
$$E_h = e^2/a_0$$
,
1 Bohr = $\hbar^2/m_e e^2 = a_0$,

con a_0 el radio de Bohr.

Moléculas diatómicas

2.1. Molécula diatómica

En el estudio de moléculas diatómicas el hamiltoniano que describe al sistema es

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{n} \nabla_{i}^{2} - \frac{1}{2} \left(\frac{1}{m_{a}} \nabla_{a}^{2} + \frac{1}{m_{b}} \nabla_{b}^{2} \right) + \sum_{i} \sum_{j>i} \frac{1}{r_{ij}} + \frac{Z_{a} Z_{b}}{R} - \sum_{i=1} \left(\frac{Z_{a}}{r_{ai}} + \frac{Z_{b}}{r_{bi}} \right),$$
(2.1)

con $i \neq j$ denotando a los electrones, mientras que $a \neq b$ hacen referencia a los dos núcleos. En la expresión (2.1), el primer y segundo término son los operadores de energía cinética de los n electrones y los dos núcleos, respectivamente. El tercer término es el correspondiente a la repulsión entre electrones. El cuarto término concierne a la energía potencial de repulsión entre núcleos, con $Z_a \neq Z_b$ los números atómicos de los núcleos $a \neq b$, respectivamente. R la distancia internuclear. Por último, el término de atracción entre los n electrones y los núcleos $a \neq b$.

2.2. Movimiento electrónico y curva de energía potencial

Dentro de la *aproximación de Born-Oppenheimer* (B-O), donde los núcleos se consideran fijos (omitiendo los término cinéticos de los dos núcleos en el hamiltoniano (2.1)), la ecuación de Schrödinger es:

$$(H_{\rm el} + U_{\rm nu})\psi_{\rm el} = E(R)\psi_{\rm el}, \qquad (2.2)$$

donde \hat{H}_{el} el hamiltoniano electrónico

$$\hat{H}_{\rm el} = -\frac{1}{2} \sum_{i=1}^{n} \nabla_i^2 + \sum_i \sum_{j>i} \frac{1}{r_{ij}} - \sum_{i=1} \left(\frac{Z_a}{r_{ai}} + \frac{Z_b}{r_{bi}} \right), \tag{2.3}$$

Figura 2.1: Curva de energía potencial V(R)de una molécula diatómica, con energía de disociación de equilibrio D_{eq} . D_0 corresponde a la energía de disociación del estado vibracional fundamental $\nu = 0$. $R_{\rm eq}$ es la distancia internuclear de equilibrio. Se muestran algunos de los niveles vibracionales con número cuántico vibracional ν . Los puntos sobre la curva representan los puntos de retorno clásicos.

y $U_{\rm nu}$ el término de repulsión internuclear

$$U_{\rm nu} = \frac{Z_a Z_b}{R}.\tag{2.4}$$

La ecuación de Schrödinger (2.2) depende paramétricamente de la distancia internuclear R. Como función de R, la energía E(R) describe la llamada **curva de energía potencial** E(R) = V(R), la cual incluye a la energía electrónica $E_{\rm el}$, asociada a $\hat{H}_{\rm el}$ (2.3) y a la energía de repulsión internuclear (2.4), esto es $V(R) = E_{\rm el} + U_{\rm nu}$. Cabe destacar que se encuentra una curva diferente para cada uno de los estados electrónicos de una molécula.

En la Figura 2.1 se presentan las principales características de una curva de energía potencial de una molécula diatómica: i) la distancia entre los núcleos para la cual ocurre el mínimo en la curva V(R), conocida como distancia internuclear de equilibrio R_{eq} , ii) la profundidad en este mínimo de la curva D_{eq} , la energía de disociación de equilibrio y iii) D_0 , la energía de disociación del estado vibracional fundamental $\nu = 0$.

2.3. Métodos y aproximaciones para el estudio de curvas de energía potencial

Al día de hoy, el estudio de las curvas de energía potencial continua siendo un campo de gran interés en el análisis de moléculas diatómicas, uno de los métodos más útiles es el método de Rydberg-Klein-Rees (RKR), [2, 3, 4]. Un método semiclásico que consiste en reconstruir a la curva de energía potencial a partir de datos espectroscópicos utilizando los niveles de energía rovibracionales para obtener los puntos de retorno clásicos. Está basado en escribir al potencial nuclear efectivo para una molécula diatómica [15, 16, 17] de la forma

$$U = V(R) + \frac{\hbar^2}{2\mu R^2} L(L+1), \qquad (2.5)$$

donde el primer término V(R) es la curva de energía potencial y el segundo término es el asociado a las variables angulares considerando coordenadas esféricas. R es la distancia internuclear, L es el número cuántico rotacional y μ es la masa reducida entre los núcleos de la molécula. Para encontrar los puntos de retorno de la curva de energía potencial se

Figura 2.2: Reconstrucción de la curva de energía potencial con el método de RKR.

define el área A (en amarillo en la Figura 2.2), entre un nivel vibracional - rotacional E_n y la curva de potencial. Esta área A puede ser representa por la integral:

$$A = \int_{R_1}^{R_2} \left[E_n - V(R) - \frac{K}{R^2} \right] dR,$$
 (2.6)

con $K = (\hbar^2/2\mu)L(L+1)$. La integral (2.6) tiene dependencia en los parámetros E_n y K, esto permite obtener relaciones para los puntos de retorno R_1 y R_2 ; al derivar al área A con respecto de K y E_n . Utilizando relaciones útiles junto con la regla de cuantización de Bohr-Sommerfeld e integrales conocidas, y expresando a la energía como

$$E_{(\nu,L)} = \sum_{n,l} C_{nl} \left(\nu + \frac{1}{2}\right)^n \left[L(L+1)\right]^l, \qquad (2.7)$$

se determinan los puntos de retorno R_1 y R_2 de la curva de energía potencial para un valor de la energía E_n .

La importancia de las curvas de energía potencial no debe ser subestimada, ya que a partir de ellas es posible caracterizar a la molécula, por ejemplo, mediante la obtención del espectro rovibracional de la molécula y las probabilidades de transición entre los estados. En particular existe un interés en el desarrollo de representaciones simples y analíticas. Algunas de las expresiones más utilizadas para representar las curvas de energía potencial son los siguientes:

- Potenciales fenomenológicos [17]
 - Oscilador armónico [18]: Los niveles de energía vibracionales más bajos de una molécula diatómica pueden aproximarse mediante los niveles del oscilador armónico. Cuando el desplazamiento respecto de la posición de equilibrio ($x = R - R_{eq}$) es pequeño, se puede expresar a la energía potencial del sistema con solo un término proporcional a x^2 ,

$$V(x) = \frac{1}{2}\mu\omega^2 x^2,$$
 (2.8)

donde ω es la frecuencia angular, asociada a la frecuencia vibracional del sistema y μ es la masa reducida de la molécula diatómica. Un potencial ampliamente

estudiado, para el cual los niveles de energía resultan ser

$$E_{\nu} = \hbar\omega \left(\nu + \frac{1}{2}\right), \qquad \nu = 0, 1, 2, \cdots.$$
(2.9)

• Potencial de Lennard-Jones [15]: Un potencial útil en la descripción de la interacción entre átomos neutros. Este consta de dos términos, el correspondiente al término atractivo de interacción dipolo-dipolo de dispersión $(-1/R^6)$ y un término de repulsión como $1/R^{12}$, expresado como

$$V(R) = 4D_{\rm eq} \left[\left(\frac{\sigma}{R}\right)^{12} - \left(\frac{\sigma}{R}\right)^6 \right], \qquad (2.10)$$

donde D_{eq} es la energía de disociación y σ es el valor de la distancia internuclear para el cual $V(R = \sigma) = 0$.

• **Potencial de Morse** [19]: Basado en un término exponencial con argumento proporcional al desplazamiento ($x = R - R_{eq}$) respecto de la posición de equilibrio R_{eq} , escrito de la forma

$$V(R) = D_{\rm eq} \left[(e^{-\alpha x} - 1)^2 - 1 \right] = D_{\rm eq} \left[e^{-2\alpha x} - 2e^{-\alpha x} \right],$$
(2.11)

donde D_{eq} es la energía de disociación y α es un parámetro que depende de cada molécula. Los parámetros D_{eq} , R_{eq} y α , se obtienen al realizar un ajuste con datos espectroscópicos o resultados numéricos. La ecuación de Schrödinger para este potencial puede ser resuelta [18] y los niveles de energía son

$$E_{\nu} = \hbar\omega_{\rm e} \left(\nu + \frac{1}{2}\right) - \hbar\omega_{\rm e} x_e \left(\nu + \frac{1}{2}\right)^2, \qquad \nu = 0, 1, 2, \cdots, \qquad (2.12)$$

donde ω_e y x_e , son constantes que se relacionan entre sí ($\omega_e x_e = \alpha^2 \hbar/2\mu$) y con los parámetros del potencial de Morse (R_{eq} , D_{eq} y α), y la masa reducida μ de los núcleos de la molécula. Una deficiencia de este potencial es que no reproduce correctamente el comportamiento para distancias internucleares pequeñas, ya que V(R = 0) es una constante, mientras que el comportamiento correcto debería ser $V(R = 0) \rightarrow \infty$.

• Series de potencias: Se destaca la *serie de Dunham* [20], Es una serie alrededor del punto de equilibrio $\zeta = 0$, con $\zeta = (R - R_{eq})/R_{eq}$ y R_{eq} la distancia de equilibrio. La expresión para la curva de energía potencial es

$$V(\zeta) = hca_0\zeta^2(1 + a_1\zeta + a_2\zeta^2 + a_3\zeta^3 + \cdots), \qquad (2.13)$$

con $a_0 = \omega^2/4B_e$; donde ω es la frecuencia clásica de pequeñas oscilaciones y $B_e = h/(8\pi^2 m R_{eq}^2 c)$ es conocido como el coeficiente rotacional, donde c es la velocidad de la luz y μ es la masa reducida de los núcleos. Con este potencial y la energía $E_{(\nu,L)}$ de los estados rovibracionales expresada en términos de los números cuánticos vibracional ν y rotacional L, de la forma

$$E_{(\nu,L)} = \sum_{n=0}^{\infty} \sum_{l=0}^{\infty} Y_{nl} \left(\nu + \frac{1}{2}\right)^n \left[L(L+1)\right]^l, \qquad (2.14)$$

los coeficientes de Dunham Y_{nl} quedan relacionados con los coeficientes a_i . El problema con el comportamiento de esta serie es que solo es válida alrededor del punto de equilibrio y para obtener resultados que sean comparables con los experimentales es necesario el cálculo de un gran número de constantes a_i .

Después de este panorama general de algunas de las expresiones analíticas para representar a las curvas de energía potencial, cabe destacar que a pesar de ser representaciones simples, (incluso en algunos casos la ecuación de Schrödinger puede ser resuelta de manera exacta, como ocurre con el oscilador armónico y el potencial de Morse) estas presentan serias deficiencias. Se encuentra que fallan en el comportamiento de los límites asintóticos, al no reproducir correctamente los casos límite para distancias pequeñas $R \to 0$ y grandes $R \to \infty$, solo siendo válidas en una región alrededor del punto de equilibrio $R_{\rm eq}$ de la curva de energía potencial. Uno de los objetivos de este trabajo es construir una expresión analítica que reproduzca de manera correcta el comportamiento de la curva de energía potencial en todo el dominio de distancias internucleares R para el estado base $X^1\Sigma^+$ de la molécula diatómica de fluoruro de hidrógeno, tomando como base un **aproximante de Padé de dos puntos**, con el cual se obtengan resultados precisos, comparables con los resultados experimentales.

Curva de energía potencial del fluoruro de hidrógeno (HF)

En este capítulo se considera explícitamente el estado base $X^1\Sigma^+$ de la molécula de fluoruro de hidrógeno (HF), una molécula diatómica compuesta por un átomo de hidrógeno y otro de fluor. Para este sistema que consta de 10 electrones y 2 núcleos, se construye una expresión analítica de la curva de energía potencial E(R) basada en un **aproximante de Padé de dos puntos** y datos experimentales. En la Figura 3.1 se muestran los resultados obtenidos en la referencia [6], representando los puntos de retorno clásicos de los niveles vibracionales para el estado base $X^1\Sigma^+$ de HF.

Figura 3.1: Datos experimentales de la curva de energía potencial como función de la distancia internuclear R obtenidos de la referencia [6].

Para la expresión analítica de la curva de energía potencial se hace uso de un apro-

ximante de Padé de dos puntos (ver más adelante), siguiendo un criterio basado en la reproducción del correcto comportamiento asintótico de la energía de interacción de la molécula, lo cual se presenta a continuación.

3.1. Límites asintóticos

El comportamiento de los límites asintóticos de la molécula HF se estudia para la energía de disociación que se expresa como

$$\widetilde{E} = V(R) - (E_{\rm F} + E_{\rm H}), \qquad (3.1)$$

es decir, la energía total del sistema V(R) menos la suma de las energías del átomo de flúor $E_{\rm F}$ e hidrógeno $E_{\rm H}$ libres.

3.1.1. Distancias internucleares pequeñas

En esta región son predominantes dos tipos de interacciones, la coulombiana y la de intercambio. Estas son de mayor intensidad conforme la distancia internuclear disminuye.

En el límite de *átomo unido*, la distancia entre dos núcleos a y b con cargas Z_a y Z_b respectivamente, tiende a cero y da como resultado un núcleo compuesto con carga nuclear $Z_a + Z_b$. Para el caso de la molécula de fluoruro de hidrógeno, el núcleo de hidrógeno H se incorpora con el núcleo de fluor F, dando origen a un átomo con $Z_H + Z_F = 10$ protones y 10 electrones, es decir, un átomo de neón Ne.

Para estudiar el comportamiento analítico de la energía electrónica para distancias internucleares pequeñas, se considera lo siguiente [21]. El hamiltoniano electrónico en el límite de átomo unido de la molécula (omitiendo el término de repulsión internuclear $Z_a Z_b/R$ en (3.5)), se puede escribir como la suma del hamiltoniano de átomo unido \hat{H}_{au} más un término de interacción V_{int} ,

$$H = H_{\rm au} + V_{\rm int}$$
$$= \left[\sum_{i} \left(-\frac{1}{2}\nabla_i - \frac{Z_{\rm au}}{r_i}\right) + \sum_{i} \sum_{i>j} \frac{1}{r_{ij}}\right] + \left[\sum_{i} \frac{Z_{\rm au}}{r_i} - \sum_{i} \sum_{\alpha} \frac{Z_{\alpha}}{r_{\alpha i}}\right], \qquad (3.2)$$

donde *i* y *j* son las etiquetas para los electrones y α para los núcleos. El primer elemento entre corchetes, corresponde al hamiltoniano de átomo unido y se pueden resaltar dos elementos: *i*) el término entre paréntesis es la energía cinética de los electrones más el término de interacción coulombiana del átomo unido, con $Z_{au} = \sum_{\alpha} Z_{\alpha}$ su número atómico y *ii*) el término de la energía potencial de repulsión entre electrones. El segundo término entre corchetes corresponde a la energía de interacción V_{int} . En este aparece el término de interacción coulombiana de átomo unido con signo positivo y por último, el término de interacción entre electrones y núcleos de carga Z_{α} . Suponiendo que se conocen las eigenfunciones de átomo unido $\phi^{(au)}$, para las cuales la ecuación de Schrödinger es

$$\hat{H}_{\rm au}\phi^{\rm (au)} = E_{\rm au}\phi^{\rm (au)}.\tag{3.3}$$

Entonces, es posible utilizar este conjunto de funciones $\{\phi^{(au)}\}$ como una base para escribir las eigenfunciones moleculares Φ , esto es

$$\Phi = \sum_{i} \mathcal{C}_{i} \,\phi_{i}^{(\mathrm{au})}.\tag{3.4}$$

En este punto se aplica el método variacional, el cual arroja una ecuación secular para obtener los valores y vectores propios del hamiltoniano (3.2). Con lo anterior y haciendo uso de la expansión multipolar para escribir a la energía de interacción V_{int} , la energía queda expresada como una serie de potencias en R. Un análisis detallado [21, 22] muestra que de manera general el coeficiente del término lineal es cero ($E_1 = 0$) y la primera corrección es cuadrática en R [21]. La energía potencial de la molécula diatómica con átomos a y b, incluyendo el termino coulombiano repulsivo queda expresada de la forma:

$$V(R) = \frac{Z_a Z_b}{R} + E_{au} + E_1 R + E_2 R^2 + E_3 R^3 + \cdots .$$
(3.5)

En esta expresión, como se indicó, el primer término es la interacción coulombiana con Z_a y Z_b los números atómicos de los átomos a y b, E_{au} es la energía asociada al límite de átomo unido y los términos E_1, E_2, \ldots , son correcciones a este límite debido a una distancia finita R entre los núcleos, siendo el término coulombiano el dominante en el potencial.

En el presente trabajo la expansión del potencial para distancias pequeñas se considera la forma funcional y los coeficientes exactos hasta incluir el término lineal para la molécula de fluoruro de hidrógeno (HF). Así, la energía \tilde{E} en distancias internucleares pequeñas $R \to 0$ se expande en la forma

$$\widetilde{E} = \frac{9}{R} + \varepsilon_0 + O(R^2), \qquad (3.6)$$

donde el primer término es la interacción coulombiana $Z_H Z_F / R$ y ε_0 es la diferencia entre la energía del límite de átomo unido ($E_{\text{Ne}} = -128.9373$ Hartree [23]) y la suma de los componentes individuales de la molécula:

$$\varepsilon_0 = E_{\rm Ne} - (E_{\rm F} + E_{\rm H}), \qquad (3.7)$$

con $E_{\rm H} = -0.5$ Hartree y $E_{\rm F} = -99.7334$ Hartree [23].

3.1.2. Distancias internucleares grandes

Por otro lado, para distancias internucleares grandes $R \to \infty$, las fuerzas son atractivas. En esta región se presenta principalmente la energía de dispersión, un fenómeno cuántico debido a la redistribución de la densidad electrónica en los átomos. Cabe mencionar que las primeras expresiones para las fuerzas de dispersión, también llamadas fuerzas de London [24], fueron obtenidas a través de teorías clásicas [15, 25]. Uno de los trabajos pioneros fue el estudio de la interacción entre dos átomos de hidrógeno presentado por L. Pauling [26]. Esta metodología se extendió para dar solución a otros sistemas más complejos.

Se considera que el movimiento aleatorio de los electrones en un átomo genera multipolos instantáneos que inducen otros momentos multipolares en el otro átomo, la interacción de estos momentos define a la energía de dispersión. La expansión multipolar para la energía de dispersión generalmente se expresa como una serie con coeficientes C_n denotados como *coeficientes de dispersión* [15]:

$$E_{\rm disp} = -\sum_{n=6} \frac{C_n}{R^n}.$$
(3.8)

Para interacciones entre átomos neutros, la serie solo contiene términos con potencias pares de n. El primer término es de la forma $1/R^6$, correspondiente a la interacción dipolodipolo, el segundo término $(1/R^8)$ está relacionado a la interacción dipolo-cuadrupolo, y el tercer término se debe a las interacciones dipolo-octopolar y cuadrupolo-cuadrupolo. Posteriormente, con el formalismo de la mecánica cuántica con un análisis perturbativo, esta energía de dispersión se presenta de manera natural, que es congruente con el tratamiento clásico, encontrando relaciones que presentan el mismo comportamiento que el obtenido en los resultados clásicos. Esto resulta al escribir en la ecuación de Schrödinger al hamiltoniano del sistema como la suma de los hamiltonianos de cada uno de los átomos que conforman a la molécula diatómica, más el término de interacción entre ellos, por consiguiente

$$\hat{H}\Phi = \left(\hat{H}_{A} + \hat{H}_{B} + V_{disp}\right)\Phi = (E_{A} + E_{B} + E_{disp})\Phi.$$
(3.9)

Si el término de dispersión E_{disp} es *pequeño*, es posible calcular la energía del sistema con teoría de perturbaciones. Las correcciones a la energía del sistema sin perturbar $\hat{H}^{(0)}$ $(\hat{H}^{(0)} = \hat{H}_A + \hat{H}_B)$, son de la forma:

$$E_n = E_n^{(0)} + E_n^{(1)} + E_n^{(2)} + \cdots$$

= $E_n^{(0)} + V_{nn}^{(0)} + \sum_{k \neq n} \frac{|V_{nk}^{(0)}|^2}{E_n^{(0)} - E_k^{(0)}} + \cdots,$ (3.10)

donde para átomos neutros la primera corrección $V_{nn}^{(0)}$ es cero, como ejemplo H₂ [27, 28], y la corrección a segundo orden resulta en un término de la forma $-1/R^6$, coincidiendo con la teoría clásica.

Para la molécula de HF en distancias internucleares grandes, la energía de disociación \tilde{E} tiene un comportamiento de la forma de (3.8), pero para fines de este trabajo basta con considerar los dos primeros términos de la serie,

$$\widetilde{E} = -\frac{C_6}{R^6} + O\left(\frac{1}{R^8}\right),\tag{3.11}$$

donde $C_6 = 7.766$ u.a. [10] y $C_7 = 0$.

El estudio sobre el comportamiento analítico de la energía de disociación para pequeñas (3.6) y grandes distancias (3.11), presentado anteriormente, es un punto fundamental en el presente trabajo. El siguiente paso consiste en construir una expresión analítica que interpole estos dos comportamientos límite. Para ello, se hace uso de un **aproximante de Padé de dos puntos**, el cual se describe en la siguiente sección. En este punto es importante mencionar que entre las desventajas de los potenciales fenomenológicos, como los discutidos en la sección 2.3, es la imposibilidad de reproducir correctamente el comportamiento de la curva en los límites asintóticos y solo logran describir correctamente la forma de la curva de energía potencial en una región finita del dominio de $R \in (0, \infty)$. Como se verá más adelante, estas desventajas son superadas si se utiliza una representación tipo Padé.

3.2. Curva de energía potencial

La construcción de una expresión analítica de la curva de energía potencial se basa en el uso de un aproximante de Padé de dos puntos, que se describe a continuación.

3.2.1. Aproximante de Padé de dos puntos

Una función f(z) para z pequeña, alrededor del punto z = 0, puede ser expresada como una serie de potencias

$$f(z) = \sum_{n=0}^{\infty} c_n z^n.$$
 (3.12)

Sin embargo, existen múltiples representaciones, una de ellas son los aproximantes de Padé [29], Padé[L/M](z), que se construyen como una razón de dos polinomios:

$$\operatorname{Pad\acute{e}}[L/M](z) = \frac{a_0 + a_1 z + a_2 z^2 + \ldots + a_L z^L}{b_0 + b_1 z + b_2 z^2 + \ldots + b_M z^M},$$
(3.13)

un polinomio de grado L en el numerador y uno de grado M en el denominador. Convencionalmente se utiliza la normalización $b_0 = 1$. Entonces, hay L + 1 coeficientes en el numerador y M en el denominador, los cuales quedan determinados a partir de los coeficientes c_i de la serie (3.12). Con ello, la función f(z) (3.12) es expresada como un aproximante de Padé de la forma

$$f(z) = \frac{a_0 + a_1 z + a_2 z^2 + \ldots + a_L z^L}{1 + b_1 z + b_1 z^2 + \ldots + b_M z^M} + O(z^{L+M+1}),$$
(3.14)

el cual reproduce correctamente el comportamiento de la función f(z) alrededor de z = 0. En general, se puede extender el estudio al plano complejo representando a f(z) como una serie de potencias de orden positivo y negativo, con la conocida *serie de Laurent*

$$f(z) = \sum_{n = -\infty}^{\infty} k_n z^n.$$
(3.15)

En particular, cuando $k_n = 0$ para n > 1, la representación asintótica de la función f(z) para $z \to \infty$ es

$$f(z) = k_0 + \frac{k_1}{z} + \frac{k_2}{z^2} + \cdots .$$
(3.16)

En este caso, con un análisis similar al presentado para el caso de f(z) alrededor de z = 0, se puede obtener una representación de f(z) para z grande a través del aproximante de Padé de (3.13). Para ello, se reescribe el aproximante de la forma

$$\operatorname{Pad\acute{e}}[L/M](z) = \frac{z^{L} \left(\frac{a_{0}}{z^{L}} + \frac{a_{1}}{z^{L-1}} + \frac{a_{2}}{z^{L-2}} + \dots + a_{L}\right)}{z^{M} \left(\frac{1}{z^{M}} + \frac{b_{1}}{z^{M-1}} + \frac{b_{2}}{z^{M-2}} + \dots + b_{M}\right)},$$
(3.17)

y se realiza el cambio de variable u = 1/z, encontrando

$$\operatorname{Pad\acute{e}}[L/M](u) = u^{L-M} \frac{a_0 u^L + a_1 u^{L-1} + a_2 u^{L-2} + \ldots + a_L}{u^M + b_1 u^{M-1} + b_2 u^{M-2} + \ldots + b_M} = \frac{u^{L-M}}{b_M} \frac{a_L + \ldots + a_2 u^{L-2} + a_1 u^{L-1} + a_0 u^L}{1 + \ldots + \beta_2 u^{M-2} + \beta_1 u^{M-1} + u^M},$$
(3.18)

donde $\beta_i = b_i/b_M$ y $M \ge L$. Los valores de $\{a_i, \beta_i\}$ quedan determinados en términos de los coeficientes k_n (3.16).

Una de las generalizaciones de los aproximantes de Padé y de la cual se hará uso, es conocida como *aproximante de Padé de dos puntos*, donde al igual que en el caso de f(z) alrededor de z = 0 (3.14) se trata de una función racional, pero cuyos coeficientes

en este caso se determinan haciendo coincidir un cierto número de términos de las series para z pequeño (3.12) y z grande (3.16) de la función f(z).

Para el caso de la molécula diatómica de fluoruro de hidrógeno (HF), se aprovechan las propiedades del aproximante de Padé de dos puntos para reproducir el comportamiento de la curva de energía potencial en sus dos límites asintóticos $R \to 0$ y $R \to \infty$, lo cual se discute a continuación.

3.2.2. Expresión analítica de la curva de energía potencial

Para construir una expresión analítica de la curva de energía potencial que interpole los dos límites asintóticos $R \to 0$ (3.6) y $R \to \infty$ (3.11), se utiliza al producto del aproximante de Padé de dos puntos de la forma Padé [N/N + 5](R) por el término 1/R(necesario para reproducir el término coulombiano de la forma ~ 1/R para $R \to 0$), quedando la curva representada por

$$E(R) = \frac{1}{R} \operatorname{Pad\acute{e}} \left[N/N + 5 \right] (R). \tag{3.19}$$

Tomando N = 5, el cual es el más adecuado para los propósitos del presente trabajo (ver discusión más adelante), de forma explícita se tiene

$$E_{\{3,2\}}(R) = \frac{1}{R} \operatorname{Pad\acute{e}}[5/10](R) = \frac{9+a_1R+a_2R^2+a_3R^3+a_4R^4-C_6R^5}{R(1+\alpha_1R+\alpha_2R^2+b_3R^3+b_4R^4+b_5R^5+b_6R^6+b_7R^7+b_8R^8+\alpha_3R^9+R^{10})},$$
(3.20)

donde se han impuesto tres constricciones α_i (i = 1, 2, 3):

=

$$\alpha_{1} = \frac{a_{1} - \varepsilon_{0}}{9},
\alpha_{2} = \frac{-a_{1}\varepsilon_{0} + \varepsilon_{0}^{2} + 9a_{2}}{81},
\alpha_{3} = -\frac{a_{4}}{C_{6}},$$
(3.21)

las cuales garantizan el comportamiento esperado de los tres primeros términos en la expansión de serie (3.6): R^{-1} , R^0 y R para distancias internucleares pequeñas, $R \to 0$ y los dos primeros términos de la serie (3.11): R^{-6} y R^{-7} para distancias internucleares grandes, $R \to \infty$. Así quedando denotada como $E_{\{3,2\}}(R)$ debido a la reproducción de estos términos.

Los parámetros libres se obtienen a través de un ajuste de la expresión analítica (3.20) con los resultados experimentales obtenidos en [6]. Los valores explícitos de los parámetros son

$$a_1 = 2761.87,$$
 $a_2 = -2269.79,$ $a_3 = -193.29,$ $a_4 = 107.967,$
 $b_3 = -660.63,$ $b_4 = 1909.71,$ $b_5 = -1658.58,$ $b_6 = 988.485,$ (3.22)
 $b_7 = -379.066,$ $b_8 = 94.677.$

Es importante notar que debido a que la expresión analítica (3.20) es una razón de dos polinomios, la curva de energía potencial $E_{\{3,2\}}(R)$ no es analítica en algunos puntos, conocidos como *singularidades*, estos son clasificados como *polos simples* y se presentan

a continuación

$$R = 0,$$

$$R = -0.2767,$$

$$R = -0.0033,$$

$$R = 0.0718 - 0.8510i,$$

$$R = 0.7291 - 2.2200i,$$

$$R = 2.6625 - 2.9655i,$$

$$R = 3.6279 - 2.1015i,$$

$$R = -0.0033,$$

$$R = -0.0033,$$

$$R = 0.0718 + 0.8510i,$$

$$R = 0.7291 + 2.2200i,$$

$$R = 2.6625 + 2.9655i,$$

$$R = 3.6279 + 2.1015i.$$
(3.23)

En la Figura 3.2 se muestra la gráfica de los polos simples (3.23) de $E_{\{3,2\}}(R)$ (3.20) en el plano complejo, en el que la parte real (Re) está representada en el eje de abscisas y la parte imaginaria (Im) en el eje de ordenadas. Se observa que los polos con valores puramente reales se distribuyen en el lado negativo del eje real, algo fundamental para reproducir el comportamiento en el dominio $R \in (0, \infty)$. Mientras que los polos con componentes real e imaginario tienen su parte real en el lado positivo del eje.

Los desarrollos en series de potencias de la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20), alrededor de los dos límites asintóticos $R \to 0$ (3.6) y $R \to \infty$ (3.11), después de reemplazar las constricciones α_i (i = 1, 2, 3) (3.21) y los parámetros (3.22), están dadas por

• $R \rightarrow 0$

$$E_{\{3,2\}}(R) = \frac{9}{R} - 28.7039 + 0 \cdot R + O(R^2), \qquad (3.24)$$

• $R \to \infty$

$$E_{\{3,2\}}(R) = -\frac{7.766}{R^6} + \frac{0}{R^7} + O\left(\frac{1}{R^8}\right), \qquad (3.25)$$

las cuales son una muestra de que $E_{\{3,2\}}(R)$ (3.20) es una representación válida para todo el dominio $R \in (0, \infty)$.

En la Figura 3.3, se muestra la gráfica del ajuste de la expresión para la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20), junto con los resultados experimentales presentados en [6].

En la Tabla 3.1 se presentan las comparaciones de los resultados obtenidos con la expresión analítica (3.20) y los datos experimentales. En las dos primeras columnas se muestran las distancias internucleares para los puntos de retorno de la curva de energía potencial $R_{mín}$ y $R_{máx}$. En la tercera columna los resultados experimentales de la referencia

Figura 3.3: Gráfica de la expresión analítica para la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20) (linea continua). Los puntos representan los resultados experimentales de la referencia [6].

P, $[u, v]$	R [u o]	E [Hartree]									
$n_{\rm mín}$ [u.a.]	$n_{\text{máx}}$ [u.a.]	Ref. [6]	$E_{\{3,2\}}(R_{\min})$	$E_{\{3,2\}}(R_{\text{máx}})$							
1.57634	1.92856	-0.21556	-0.21557	-0.21556							
1.48248	2.10342	-0.19751	-0.19752	-0.19751							
1.42634	2.24290	-0.18025	-0.18025	-0.18025							
1.38529	2.36979	-0.16375	-0.16374	-0.16375							
1.35286	2.49078	-0.14799	-0.14798	-0.14799							
1.32613	2.60905	-0.13295	-0.13295	-0.13296							
1.30352	2.72653	-0.11863	-0.11863	-0.11864							
1.28405	2.84461	-0.10502	-0.10502	-0.10502							
1.26707	2.96450	-0.09210	-0.09210	-0.09210							
1.25212	3.08735	-0.07987	-0.07987	-0.07987							
1.23890	3.21446	-0.06834	-0.06835	-0.06834							
1.22716	3.34736	-0.05752	-0.05752	-0.05752							
1.21673	3.48807	-0.04742	-0.04742	-0.04742							
1.20748	3.63937	-0.03807	-0.03807	-0.03808							
1.19934	3.80533	-0.02951	-0.02951	-0.02952							
1.19225	3.99227	-0.02181	-0.02181	-0.02181							
1.18618	4.21070	-0.01502	-0.01502	-0.01502							
1.18116	4.47992	-0.00928	-0.00927	-0.00926							
1.17725	4.84130	-0.00471	-0.00470	-0.00471							
1.17457	5.41923	-0.00153	-0.00153	-0.00155							
1.17337	7.29868	-0.00010	-0.00010	-0.00005							

Tabla 3.1: Resultados experimentales de la curva de energía potencial de HF [6] (columna 3) para los puntos de retorno $R_{\rm mín}$ y $R_{\rm máx}$. En las columnas 4 y 5 se muestran las evaluaciones del ajuste $E_{\{3,2\}}(R)$ (3.20) en los puntos $R_{\rm mín}$ y $R_{\rm máx}$.

[11.9.]	$\operatorname{Pad\acute{e}}[N/N+5]$														
[u.a.]	N = 1	N=2	N = 3	N = 4	N = 5	N = 6									
E_0	-141.9823	-28.7039	-28.7039	-28.7039	-28.7039	-28.7039									
E_1	2120.7373	350.9060	0.0000	0.0000	0.0000	0.0000									
C_6	-7.7660	-7.7660	-7.7660	-7.7660	-7.7660	-7.7660									
C_7	-55.5535	-75.2022	-78.0399	0.0000	0.0000	0.0000									
E_2	-31447.8812	-2743.9647	740.5392	3424.8334	26898.2706	1.0754×10^{6}									
C_8	-270.4345	-423.0454	-450.5289	-8.4883	541.9729	-2115.1182									

Tabla 3.2: Comparaciones de los coeficientes E_0 , E_1 , E_2 , C_6 , C_7 y C_8 , entre expansiones en serie de la curva de energía potencial E(R) para distancias internucleares pequeñas $R \to 0$ y grandes $R \to \infty$, basadas en distintos grados de los aproximantes de Padé[N/N+5] con N = 1, 2, 3, 4, 5, 6, respectivamente.

[6] para dichas posiciones y en las dos últimas columnas, las evaluaciones de estos puntos de retorno en la expresión para la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20).

Una vez obtenida la expresión analítica de la curva de energía potencial, es posible determinar fácilmente la posición en el mínimo R_{eq} y la profundidad D_{eq} de esta curva al tomar la derivada de $E_{\{3,2\}}(R)$ (3.20) e igualando a cero. Los valores obtenidos se comparan con los resultados de la referencia [6],

Ajuste:	$D_{\rm eq} = -0.224913$ Hartree	en	$R_{\rm eq} = 1.73254$ u.a.
6	$D_{\rm eq} = -0.224908$ Hartree	en	$R_{\rm eq} = 1.73257$ u.a.

observando que el error absoluto es 5×10^{-6} Hartree y 3×10^{-5} u.a., para la energía y la posición de equilibrio, respectivamente.

A pesar de haber optado por un aproximante de Padé [5/10], es necesario mencionar qué sucede si se elige un valor de N menor o mayor a 5 en la estructura general del aproximante de Padé[N/N+5]. En la Tabla 3.2 se presentan los valores de los coeficientes de las expansiones en serie de la curva de energía potencial E(R) para distancias internucleares pequeñas $R \to 0$ y grandes $R \to \infty$, de los distintos grados de los aproximantes de Padé [N/N + 5] con N = 1, 2, 3, 4, 5, 6. Se puede ver que los coeficientes E_0 y E_1 , cuando su valor no se fija de antemano mediante constricciones, presentan una tendencia al valor correcto con el incremento de N. El valor del coeficiente C_6 , siempre es posible fijarlo al valor esperado, mientras que C_7 mantiene un valor promedio alrededor de -69, hasta que es posible fijar su valor. En la segunda parte de la Tabla 3.2 se presentan los coeficientes E_2 y C_6 . Se puede observar un cambio de signo en el coeficiente E_2 al pasar del aproximante con N = 2 a N = 3, aumentando su magnitud con el incremento de N. Respecto al coeficiente C_8 en todos los casos considerados es negativo, excepto para N = 5 y su magnitud, al igual que el coeficiente E_2 incrementa conforme N lo hace. Por lo tanto, aunque en el desarrollo en serie de $E_{\{3,2\}}(R)$ (3.20) para $R \to 0$ (3.24) y $R \to \infty$ (3.25) con un aproximante de Padé [5/10], se reproducen algunos de los términos de las series, esta representación basada en aproximantes de Padé de la curva de energía potencial se ve limitada en la predicción de más coeficientes de las series.

Después del análisis del comportamiento de los coeficientes de las expansiones en serie para distancias internucleares R pequeñas y grandes, es interesante examinar los resultados al evaluar la expresión de la curva de energía potencial E(R) basada en estos aproximantes de Padé y compararlos con datos experimentales. Para el caso N = 4, con un Padé [4/9], como ya se mencionó, se reproduce el comportamiento en serie en los límites asintóticos para distancias internucleares cortas $R \to 0$ y grandes $R \to \infty$, descritos

D [u o]		Ref. [6]					
R [u.a.]	N = 1	N=2	N = 3	N = 4	N = 5	N = 6	[Hartree]
1.17457	-0.01432	-0.00130	-0.00144	-0.00156	-0.00153	-0.00153	-0.00153
1.18116	-0.02020	-0.00916	-0.00922	-0.00929	-0.00927	-0.00927	-0.00928
1.19225	-0.02990	-0.02184	-0.02182	-0.02180	-0.02181	-0.02181	-0.02181
1.20748	-0.04284	-0.03823	-0.03813	-0.03804	-0.03807	-0.03806	-0.03807
1.22716	-0.05888	-0.05776	-0.05762	-0.05749	-0.05752	-0.05752	-0.05752
1.25212	-0.07814	-0.08010	-0.07996	-0.07984	-0.07987	-0.07987	-0.07987
1.28405	-0.10100	-0.10513	-0.10506	-0.10500	-0.10502	-0.10502	-0.10502
1.32613	-0.12805	-0.13287	-0.13291	-0.13296	-0.13295	-0.13295	-0.13295
1.38529	-0.16017	-0.16345	-0.16362	-0.16378	-0.16374	-0.16375	-0.16375
1.48248	-0.19849	-0.19722	-0.19739	-0.19755	-0.19752	-0.19752	-0.19751
1.73257	-0.23035	-0.22541	-0.22516	-0.22484	-0.22491	-0.22490	-0.22491
1.92856	-0.21672	-0.21602	-0.21577	-0.21552	-0.21556	-0.21556	-0.21556
2.24290	-0.17690	-0.17994	-0.18005	-0.18029	-0.18025	-0.18025	-0.18025
2.49078	-0.14637	-0.14767	-0.14784	-0.14801	-0.14799	-0.14798	-0.14799
2.72653	-0.11994	-0.11873	-0.11876	-0.11860	-0.11864	-0.11863	-0.11863
2.96450	-0.09469	-0.09247	-0.09234	-0.09206	-0.09210	-0.09209	-0.09210
3.21446	-0.06964	-0.06855	-0.06840	-0.06835	-0.06834	-0.06834	-0.06834
3.48807	-0.04605	-0.04720	-0.04717	-0.04747	-0.04742	-0.04741	-0.04742
3.80533	-0.02642	-0.02909	-0.02922	-0.02952	-0.02952	-0.02951	-0.02951
4.21070	-0.01245	-0.01497	-0.01518	-0.01495	-0.01502	-0.01502	-0.01502
4.84130	-0.00408	-0.00533	-0.00547	-0.00476	-0.00471	-0.00471	-0.00471
7.29868	-0.00017	-0.00022	-0.00023	-0.00011	-0.00005	-0.00010	-0.00010

Tabla 3.3: Comparación entre la evaluación de los ajustes de E(R) con distintos grados de los aproximantes de la forma Padé[N/N + 5] con N = 1, 2, 3, 4, 5, 6, respectivamente, y datos de la referencia [6], para diferentes distancias internucleares R. Se destaca en negritas al mínimo de la curva.

previamente. Los resultados reproducen correctamente 3-4 cifras decimales, respecto a los valores experimentales, como se puede ver en la columna 5 de la Tabla 3.3. Sin embargo, considerando N = 5 el acuerdo está entre 4 - 5 cifras decimales (columna 6 de la Tabla 3.3). Por otro lado, con los aproximantes Padé [1/6], Padé [2/7] y Padé [3/8], no se reproduce el número de términos considerados en este trabajo para los comportamientos en la expansión en serie del potencial en los límites asintóticos. Esto debido a la disminución en los grados de los polinomios en el numerador y denominador, los cuales están directamente relacionados con el número de constricciones (3.21), que como ya se ha mencionado, garantizan el correcto comportamiento de E(R). Pese a esto, si la curva de energía potencial se basa en alguno de estos aproximantes de Padé más simples aún se obtienen buenos resultados, que están en acuerdo (hasta cierta precisión) con los datos experimentales, como se muestra en las columnas 2, 3 y 4 de la Tabla 3.3. Por su parte, para aproximantes con N mayor que 5, prácticamente se encuentran los mismos resultados que con N = 5, salvo en casos particulares. Por ejemplo, en la penúltima columna de la Tabla 3.3 se muestran los resultados del aproximante Padé [6/11]. Por lo anterior, un aproximante de Padé con N = 5 resulta suficiente para los propósitos de este trabajo.

Luego de mostrar las comparaciones de los resultados experimentales con distintos aproximantes de Padé como base para la expresión de la curva de energía potencial, a continuación se comparan con los obtenidos con un potencial fenomenológico: el potencial de Morse.

Figura 3.4: Curva de energía potencial con expresión analítica del potencial de Morse (2.11) $E_{\rm M}(R) = D_{\rm eq} \left[e^{[-2\alpha(R-R_{\rm eq})]} - 2e^{[-\alpha(R-R_{\rm eq})]} \right]$ con $D_{\rm eq} = 0.229311$ u.a., $R_{\rm eq} = 1.73329$ u.a. y $\alpha = 1.23414$, representada con la linea continua. Los puntos representan los resultados experimentales de la referencia [6].

3.2.3. Comparación de resultados con el potencial de Morse

En la Figura 3.4 se muestra el ajuste de la curva de energía potencial para el estado base $X^{1}\Sigma^{+}$ de HF con expresión analítica del potencial de Morse (2.11) con datos experimentales de [6]. Se encuentran los parámetros de Morse: $D_{eq} = 0.22931$ u.a., $R_{eq} = 1.73329$ u.a. y $\alpha = 1.23414$. En la Tabla 3.4 se presentan las comparaciones de los datos de la referencia [6] con los resultados obtenidos con la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20) basada en el aproximante de Padé [5/10] y la evaluación de la expresión analítica del potencial de Morse $E_{\rm M}(R)$ (2.11), para diferentes distancias internucleares R. Se observa que el potencial de Morse comienza a diferir respecto de los valores experimentales a partir de distancias internucleares de $R \sim 3.5$ u.a., mientras que en R = 0 tiene un valor finito, siendo este uno de los mayores inconvenientes de esta representación. Otra información que se pueden extraer de esta curva es el valor de la energía de disociación $E_{\rm mín} = -0.22931$ Hartree y la posición de equilibrio $R_{\rm mín} = 1.73329$ u.a. Al igual que se realizó para la curva basada en un aproximante de Padé [5/10] (3.20), se calculan los errores absolutos de estas dos cantidades respecto de los resultados numéricos en [6]: Para la energía de disociación se obtiene 5×10^{-3} Hartree y para el mínimo de la curva 1×10^{-3} u.a., resultados con una precisión lejana a los obtenidos en el presente trabajo. Aunque este solo es un ejemplo de comparación con una de las tantas expresiones fenomenológicas, se puede ver que la representación de la curva de energía potencial basada en un aproximante de Padé de dos puntos resulta en una expresión analítica y compacta válida en todo el dominio de distancias internucleares R con la cual se pueden obtener resultados confiables que reproducen de manera precisa los datos experimentales.

<i>P</i> [u a]		E [Hartree]	
n [u.a.]	Ref. [6]	$E_{\{3,2\}}(R)$ (3.20)	$E_{\rm M}(R)$ (2.11)
1.48248	-0.19751	-0.19752	-0.19913
1.38529	-0.16375	-0.16374	-0.16332
1.32613	-0.13295	-0.13295	-0.13158
1.28405	-0.10502	-0.10502	-0.10342
1.25212	-0.07987	-0.07987	-0.07852
1.22716	-0.05752	-0.05752	-0.05672
1.20748	-0.03807	-0.03807	-0.03796
1.19225	-0.02181	-0.02181	-0.02245
1.18116	-0.00928	-0.00927	-0.01058
1.17457	-0.00153	-0.00153	-0.00329
1.73257	-0.22491	-0.22491	-0.22931
1.92856	-0.21556	-0.21556	-0.21879
2.24290	-0.18025	-0.18025	-0.17934
2.49078	-0.14799	-0.14799	-0.14472
2.72653	-0.11863	-0.11864	-0.11486
2.96450	-0.09210	-0.09210	-0.08938
3.21446	-0.06834	-0.06834	-0.06779
3.48807	-0.04742	-0.04742	-0.04958
3.80533	-0.02951	-0.02952	-0.03418
4.21070	-0.01502	-0.01502	-0.02105
4.47992	-0.00928	-0.00926	-0.01520
4.84130	-0.00471	-0.00471	-0.00979
5.41923	-0.00153	-0.00155	-0.00483
7.29869	-0.00010	-0.00005	-0.00048

Tabla 3.4: Resultados de la curva de energía potencial de HF de la referencia [6] (columna 2) para varias distancias internucleares R. En la columna 3 se muestra la evaluación del ajuste $E_{\{3,2\}}(R)$ (3.20) basado en el aproximante de Padé [5/10] y en la columna 4 la evaluación de la expresión analítica del potencial de Morse $E_{\rm M}(R)$ (2.11).

Movimiento nuclear

4.1. Hamiltoniano nuclear

Como ya se mencionó, dentro de la aproximación de Born-Oppenheimer (B-O), los movimientos electrónico y nuclear se consideran de manera independiente. La energía electrónica se encuentra al resolver la ecuación de Schrödinger del hamiltoniano electrónico (4.19), obteniendo así la curva de energía potencial E(R) (3.20). Para el movimiento nuclear de la molécula de fluoruro de hidrógeno (HF), el sistema se describe a través del hamiltoniano

$$\hat{H}_{\text{nuclear}} = -\frac{1}{2M_H} \nabla_H^2 - \frac{1}{2M_F} \nabla_F^2 + E(R), \qquad (4.1)$$

donde la masas nucleares del hidrógeno $M_H = 1836.1527$ u.a. y flúor $M_F = 34622.9705$ u.a. han sido obtenidas de [30].

La ecuación de Schrödinger asociada a este hamiltoniano es

$$\left[-\frac{1}{2M_H}\nabla_H^2 - \frac{1}{2M_F}\nabla_F^2 + E(R)\right]\Psi(\mathbf{r}_H, \mathbf{r}_F) = \varepsilon\Psi(\mathbf{r}_H, \mathbf{r}_F).$$
(4.2)

Resulta conveniente utilizar coordenadas relativas \mathbf{R} y del centro de masa \mathbf{r} , para la descripción del sistema, dejando así

$$\left[-\frac{\hbar^2}{2M}\nabla_r^2 - \frac{\hbar^2}{2\mu_{\rm HF}}\nabla_R^2 + E(R)\right]\Psi(\mathbf{r},\mathbf{R}) = \varepsilon\Psi(\mathbf{r},\mathbf{R}),\tag{4.3}$$

con $M = M_H + M_F$, la masa total y $\mu_{\rm HF} = M_H M_F / (M_H + M_F)$, la masa reducida. Esta ecuación se puede resolver utilizando el método de separación de variables donde la función de onda se escribe de la forma

$$\Psi(\mathbf{r}, \mathbf{R}) = \varphi(\mathbf{R})\phi(\mathbf{r}), \qquad (4.4)$$

y la energía ε consta de dos partes,

$$\varepsilon = \varepsilon_R + \varepsilon_r, \tag{4.5}$$

Así, de la expresión (4.3) se obtienen dos ecuaciones, una para el movimiento del centro de masa y otra para el movimiento relativo:

$$-\frac{1}{2M}\nabla_r^2\phi(\mathbf{r}) = \varepsilon_r\phi(\mathbf{r}) \tag{4.6a}$$

$$\left[-\frac{1}{2\mu_{\rm HF}}\nabla_R^2 + E(R)\right]\varphi(\mathbf{R}) = \varepsilon_R\varphi(\mathbf{R}).$$
(4.6b)

La ecuación (4.6a) del centro de masa describe el movimiento para una partícula libre, la cual no proporciona información relevante del sistema. Por su parte, la ecuación (4.6b) contiene la información de la dinámica interna nuclear de la molécula. Al ser un problema de fuerzas centrales, una propuesta natural para la función de onda $\varphi(\mathbf{R})$ es escribirla como el producto de una función que dependa de la variable radial U(R) y otra que dependa de variables angulares, los cuales resultan ser los armónicos esféricos $Y_L^m(\theta, \varphi)$,

$$\varphi(\mathbf{R}) = U(R)Y_L^m(\theta,\varphi), \qquad (4.7)$$

donde $L = 0, 1, 2, \cdots$ y $|m| \leq L$, son los números cuánticos rotacional y magnético, respectivamente.

Después de sustituir (4.7) en (4.6b), un análisis similar al que se realiza para el átomo de hidrógeno, conduce a la siguiente ecuación para la variable radial R,

$$\left[-\frac{1}{2\mu_{\rm HF}}\frac{d^2}{dR^2} + \frac{L(L+1)}{2\mu_{\rm HF}R^2} + E(R)\right]\psi_{\nu L}(R) = \varepsilon_R\psi_{\nu L}(R),\tag{4.8}$$

donde $\mu_{\rm HF}$ es la masa reducida, $U(R) = \psi_{\nu L}(R)/R$ y ν es el número cuántico vibracional. El término ε_R propiamente debería estar etiquetado como ε_{HF} , haciendo referencia a la molécula de HF, por simplicidad en próximos cálculos se indicará como $E_{(\nu,L)}$ y no se hará ninguna distinción en la notación para las moléculas de DF y TF.

Al resolver la ecuación (4.8) se obtiene la energía de todos los estados rovibracionales soportados por el estado base $X^1\Sigma^+$. A diferencia de otros métodos, donde el espectro rovibracional de las moléculas diatómicas se obtiene solamente alrededor del mínimo de la curva de energía potencial.

Para obtener la solución a la ecuación (4.8), se utiliza el *método de malla de Lagrange*, [14], el cual sobresale debido a su simpleza, eficiencia y alta precisión, además de una implementación computacional simple.

4.2. Método de malla de Lagrange

Dado un conjunto de N puntos en el plano $(x_i, g(x_i)), i = 1, \dots, N$, una forma de escribir una función que interpole estos puntos, es mediante la *interpolación polinomial de Lagrange*, que consiste en un polinomio de grado N - 1, dado por

$$P_{N-1}(x) = L_1(x)g(x_1) + L_2(x)g(x_2) + \dots + L_N(x_N)g(x_N),$$
(4.9)

donde los coeficientes $L_i(x)$ son de la forma

$$L_i(x) = \frac{(x - x_1)(x - x_2)\cdots(x - x_N)}{(x - x_i)[(x_i - x_1)(x_i - x_2)\cdots(x_i - x_N)]}$$
(4.10)

$$=\prod_{\substack{i=1\\i\neq j}}^{N} \frac{(x-x_i)}{(x_j-x_i)},$$
(4.11)

y cumplen la condición de Lagrange:

$$L_i(x_j) = \delta_{ij}.\tag{4.12}$$

Esta interpolación permite aproximar a la función g(x) como

$$g(x) \approx \sum_{i} \frac{\xi(x)}{(x - x_i)\xi'(x_i)} g(x_i),$$
 (4.13)

donde $\xi = (x - x_1)(x - x_2) \cdots (x - x_N).$

Por otro lado, un conjunto de N puntos x_i generan una malla y determinan una cuadratura de Gauss, que permite aproximar a la integral de una función G(x) como

$$\int_{a}^{b} G(x) w(x) dx \approx \sum_{i=1}^{N} \lambda_{i} G(x_{i}), \qquad (4.14)$$

donde w(x) es cierto peso y λ_i los pesos de la cuadratura.

A partir de los puntos anteriores, en el método de malla de Lagrange [14], se busca definir un conjunto de N funciones $f_i(x)$, que cumplen la llamada condición de Lagrange:

$$f_i(x_j) = \lambda_i^{-1/2} \delta_{ij} \,. \tag{4.15}$$

Las funciones $f_i(x)$, resultan ser ortonormales en la aproximación de la cuadratura de Gauss, es decir,

$$\int_{a}^{b} f_{i}^{*}(x) f_{j}(x) dx \approx \sum_{k=1}^{N} \lambda_{k} f_{i}^{*}(x_{k}) f_{j}(x_{k}) = \delta_{ij}.$$
(4.16)

4.2.1. Ecuación de Schrödinger unidimensional

Para implementar el método de malla de Lagrange en la solución de la ecuación de Schrödinger unidimensional, se considera una partícula de masa m, en un potencial efectivo V(x) definido en el intervalo unidimensional (a, b). La ecuación de Schrödinger es

$$\left[-\frac{1}{2m}\frac{d^2}{dx^2} + V(x)\right]\psi(x) = E\psi(x).$$
(4.17)

Explotando la condición de ortonormalidad de las funciones $f_i(x)$ (4.15), la función de onda $\psi(x)$, se puede aproximar como una combinación de estas funciones $f_i(x)$, tal que

$$\psi(x) = \sum_{i=1}^{N} C_i f_i(x).$$
(4.18)

Al sustituir (4.18) en (4.17), multiplicar por $f_j^*(x)$ e integrar en un intervalo de definición (a, b), se obtiene

$$\sum_{j=1}^{N} C_j \left[\frac{1}{2m} T_{ij} + V(x_i) \delta_{ij} = E \delta_{ij} \right],$$
(4.19)

donde se ha hecho uso de la cuadratura de Gauss (4.14) y de la condición de Lagrange para $f_i(x)$ (4.15). En (4.19) $T_{ij} = -\lambda_i^{1/2} f_j''(x_i)$ son elementos de matriz del operador de energía cinética, los cuales quedan determinados por la segunda derivada de las funciones

 $f_j(x)$ evaluadas en los puntos x_i y V(x) es el potencial evaluado en esos puntos. En forma matricial la ecuación (4.19) tiene la forma

$$\frac{1}{2m} \begin{pmatrix} T_{11} & T_{12} & T_{13} & \cdots \\ T_{21} & T_{22} & T_{23} & \\ T_{31} & T_{32} & T_{33} & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix} + \begin{pmatrix} V(x_1) & 0 & 0 & \cdots \\ 0 & V(x_2) & 0 & \\ 0 & 0 & V(x_3) & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix} = E\mathbb{I} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix}.$$

Los niveles de energía E del sistema se obtienen al diagonalizar la ecuación (4.19). Sin embargo, aún es necesario construir las funciones $f_i(x)$ para obtener a los elementos de matriz T_{ij} . Para tal fin, se escribe a las funciones $f_i(x)$ en términos de una base ortogonal $\{\phi_k(x)\}$ con coeficientes lineales $\alpha_k^{(i)}$,

$$f_i(x) = \sum_k \alpha_k^{(i)} \phi_k(x).$$
 (4.20)

Con la ecuación (4.20) y la condición de Lagrange (4.15), se encuentra

$$\alpha_k^{(i)} = \lambda_i^{1/2} \phi_k(x_i), \tag{4.21}$$

$$f_i(x) = \sum_k \lambda_i^{1/2} \phi_k^*(x_i) \phi_k(x_i); \qquad \lambda_i = \frac{1}{\sum_k |\phi_k(x_i)|^2}.$$
(4.22)

De manera general, la base ortogonal $\{\phi_k\}$ se puede escribir como

$$\phi_k(x) = N_k^{-1/2} P_k(x) w^{1/2}(x), \qquad (4.23)$$

donde $P_k(x)$ son polinomios ortogonales, $\omega(x)$ una función peso y N_k una constante de normalización. Además, resulta conveniente considerar a los puntos de la malla $\{x_i\}$ como las raíces de los polinomios ortogonales $P_k(x)$. Con está condición se pueden simplificar las expresiones para los pesos λ_i y las funciones $f_i(x)$, resaltando el hecho de que se cumple la condición de Lagrange:

$$f_i(x_j) = \sum_{k=1}^N \lambda_i^{1/2} \phi_k^*(x_i) \phi_k(x_j) = \lambda_i^{-1/2} \delta_{ij}.$$
 (4.24)

Para encontrar una expresión para los pesos λ_i ,

$$\lambda_i^{-1} = \frac{A_{n-1}}{A_n} \frac{N_n^{1/2}}{N_{n-1}^{1/2}} \phi_n'(x_i) \phi_{n-1}(x_i), \qquad (4.25)$$

se utiliza el teorema de Christoffel - Darboux [31] para polinomios ortogonales $P_k(x)$,

$$\sum_{k=0}^{n} \frac{P_k^2(x)}{N_k} = \frac{A_n}{A_{n+1}} \frac{P'_{n+1}(x)P_n(x) - P'_n(x)P_{n+1}(x)}{N_n},$$
(4.26)

con A_n el coeficiente principal¹. Por otra parte, la expresión para $f_i(x)$ en términos de los polinomios $P_k(x)$ resulta ser

$$f_i(x) = \lambda_i^{1/2} \omega^{1/2}(x_i) \omega^{-1/2}(x) \sum_{k=1}^N \frac{P_k(x_i) P_k(x)}{N_k}, \qquad (4.27)$$

¹El coeficiente principal de un polinomio es el coeficiente del término de mayor grado, llamado término principal.

y utilizando el teorema de Christoffel-Darboux [31]:

$$\sum_{k=0}^{n} \frac{P_k(x)P_k(y)}{N_k} = \frac{A_n}{A_{n+1}} \frac{P_{n+1}(x)P_n(y) - P_n(x)P_{n+1}(y)}{N_n(x-y)},$$
(4.28)

se obtiene de estas dos últimas expresiones (4.27) y (4.28),

$$f_i(x) = \lambda_i^{-1/2} \frac{1}{\phi'_n(x_i)} \frac{\phi_n(x)}{(x - x_i)}.$$
(4.29)

4.2.2. Dominio para $x \in (0, \infty)$

La elección de los polinomios $P_k(x)$ de la base ortogonal $\phi_k(x)$ (4.23), depende del intervalo donde x esta definida. En el caso de la molécula de fluoruro de hidrógeno (HF), la ecuación para la variable R es un problema definido en el dominio $(0, \infty)$. Es por ello que los polinomios de Laguerre $L_n(x)$ son los más adecuados para utilizar como base, quedando $\phi_k(x)$ definida en términos de estos polinomios,

$$\phi_n(x) = L_n(x)e^{-x/2};$$
 $A_n = \frac{(-1)^n}{n!};$ $N_n = 1.$ (4.30)

Con esta base, las expresiones para los pesos λ_i (4.25) y las funciones $f_i(x)$ (4.29) son

$$f_i(x) = (-1)^i x_i^{1/2} \frac{L_n(x)}{x - x_i} e^{-x/2}, \qquad (4.31a)$$

$$\lambda_i^{-1} = L'_n(x_i) L_{n-1}(x_i) e^{-x_i}.$$
(4.31b)

Con estas últimas expresiones (4.31a) y (4.31b), se está en posición de calcular la segunda derivada de $f_i(x)$, que resulta ser

$$f_i''(x) = (-1)^i x_i^{1/2} e^{-x/2} \left(\frac{-L_n'(x)((x-x_i)+2x)}{x(x-x_i)^2} + \frac{L_n(x)}{4x(x-x_i)^3} \left(x(x-x_i)^2 \left(1-\frac{4n}{x}\right) + 4x(x-x_i) + 8x \right) \right).$$
(4.32)

Los elementos de matriz T_{ij} (4.19), se pueden obtener a partir de $f''_j(x)$ (4.32) y la expresión para λ_i (4.31b). Los dos casos posibles son:

$$T_{ij} = \begin{cases} \frac{1}{2} \frac{(-1)^{j-i}}{\sqrt{x_i x_j}} \frac{x_i + x_j}{(x_i - x_j)^2} & i \neq j \\ \frac{4 + (4N + 2)x_i - x_i^2}{12x_i^2} & i = j. \end{cases}$$
(4.33)

Por consiguiente, con la forma explícita de los elementos de matriz T_{ij} (4.33) y para un potencial V(x) dado, con la ecuación (4.19) se obtienen los niveles de energía Eresolviendo el siguiente sistema

$$\frac{1}{2m} \begin{pmatrix} \frac{4+(4N+2)x_1-x_1^2}{12x_1^2} & \frac{1}{2}\frac{(-1)^{1-2}}{\sqrt{x_1x_2}}\frac{x_1+x_2}{(x_1-x_2)^2} & \frac{1}{2}\frac{(-1)^{1-3}}{\sqrt{x_1x_3}}\frac{x_1+x_3}{(x_1-x_3)^2} & \cdots \\ \frac{1}{2}\frac{(-1)^{2-1}}{\sqrt{x_2x_1}}\frac{x_2+x_1}{(x_2-x_1)^2} & \frac{4+(4N+2)x_2-x_2^2}{12x_2^2} & \frac{1}{2}\frac{(-1)^{2-3}}{\sqrt{x_2x_3}}\frac{x_2+x_3}{(x_2-x_3)^2} \\ \frac{1}{2}\frac{(-1)^{3-1}}{\sqrt{x_3x_1}}\frac{x_3+x_1}{(x_3-x_1)^2} & \frac{1}{2}\frac{(-1)^{3-2}}{\sqrt{x_3x_2}}\frac{x_3+x_2}{(x_3-x_2)^2} & \frac{4+(4N+2)x_3-x_3^2}{12x_3^2} \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix} \\ + \begin{pmatrix} V(x_1) & 0 & 0 & \cdots \\ 0 & V(x_2) & 0 \\ 0 & 0 & V(x_3) \\ \vdots & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix} = E\mathbb{I}\begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix}, \quad (4.34)$$

donde los puntos $\{x_i\}$ son las raíces de los polinomios de Laguerre, N el grado del polinomio y los eigenvectores C_i son los coeficientes de la expansión de la función de onda (4.18).

4.2.3. Escalamiento de la Malla

Hasta este punto los resultados obtenidos con el método de malla dependen completamente del parámetro N. La convergencia del valor de la energía se puede mejorar al introducir un **parámetro de escalamiento** h en los puntos de la malla de Lagrange. Este parámetro nos permite ajustar la malla a la región del dominio donde la función de onda está más *localizada*. Este escalamiento con el parámetro h producirá un cambio en la localización de los puntos x_i , de manera que $x_i \rightarrow hx_i$ [14]. La elección del valor de hdependerá de cual sea el estado a estudiar y puede ser ajustado dependiendo del dominio que se busque cubrir. Con el cambio de variable hx_i tanto las funciones de Lagrange, así como el intervalo cubierto, se verán comprimidos o extendidos dependiendo del valor del parámetro de escalamiento h. La ecuación (4.19) con este factor de escalamiento se ve modificada de la forma

$$\sum_{j=1}^{N} C_j \left[\frac{1}{2mh^2} T_{ij} + V(hx_i)\delta_{ij} \right] = EC_i.$$
(4.35)

Se puede notar que el potencial queda evaluado en los puntos $h x_i$ y aparece un factor $1/h^2$ multiplicando a los elementos de matriz del término cinético T_{ij} .

En el siguiente capítulo se implementa el método de malla de Lagrange en la ecuación del movimiento nuclear del estado base $X^+\Sigma^1$ de la molécula de HF (4.8) y se presentan los resultados obtenidos.

Molécula de fluoruro de hidrógeno (HF)

5.1. El estado base $X^1\Sigma^+$ de la molécula de HF

El espectro rovibracional de la molécula de fluoruro de hidrógeno (HF) (4.8), se obtiene utilizando el método de malla de Lagrange, descrito en la sección previa. La ecuación a resolver es una expresión análoga a (4.19), que de manera explícita es

$$\sum_{j=1}^{N} C_j \left[\frac{1}{2\mu_{\rm HF}} T_{ij} + \left(\frac{L(L+1)}{2\mu_{\rm HF} x_i^2} + E_{\{3,2\}}(x_i) \right) \delta_{ij} \right] = E_{(\nu,L)} C_i, \tag{5.1}$$

o de forma matricial:

$$\frac{1}{\mu_{\rm HF}} \begin{pmatrix} \frac{4+(4N+2)x_1-x_1^2}{12x_1^2} & \frac{1}{2}\frac{(-1)^{1-2}}{\sqrt{x_1x_2}}\frac{x_1+x_2}{(x_1-x_2)^2} & \frac{1}{2}\frac{(-1)^{1-3}}{\sqrt{x_1x_3}}\frac{x_1+x_3}{(x_1-x_3)^2} & \cdots \\ \frac{1}{2}\frac{(-1)^{2-1}}{\sqrt{x_2x_1}}\frac{x_2+x_1}{(x_2-x_1)^2} & \frac{4+(4N+2)x_2-x_2^2}{12x_2^2} & \frac{1}{2}\frac{(-1)^{2-3}}{\sqrt{x_2x_3}}\frac{x_2+x_3}{(x_2-x_3)^2} \\ \frac{1}{2}\frac{(-1)^{3-1}}{\sqrt{x_3x_1}}\frac{x_3+x_1}{(x_3-x_1)^2} & \frac{1}{2}\frac{(-1)^{3-2}}{\sqrt{x_3x_2}}\frac{x_3+x_2}{(x_3-x_2)^2} & \frac{4+(4N+2)x_3-x_3^2}{12x_3^2} \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix}$$

$$+ \begin{pmatrix} \frac{L(L+1)}{2\mu_{\rm HF}x_1^2} + E_{\{3,2\}}(x_1) & 0 & 0 & \cdots \\ 0 & \frac{L(L+1)}{2\mu_{\rm HF}x_2^2} + E_{\{3,2\}}(x_2) & 0 & \\ 0 & 0 & \frac{L(L+1)}{2\mu_{\rm HF}x_3^2} + E_{\{3,2\}}(x_3) & \\ \vdots & & \ddots \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix} = E_{(\nu,L)} \mathbb{I} \begin{pmatrix} C_1 \\ C_2 \\ C_3 \\ \vdots \end{pmatrix}.$$

donde $E_{\{3,2\}}$ (3.20) es la curva de energía potencial obtenida en la sección 3.2.2, que fue basada en el uso de un aproximante de Padé[5/10]. Una vez construida la matriz (5.1),

resta por obtener los valores y vectores propios. Esto se hizo de manera numérica, para lo cual se implementó la rutina JADAMILU [32]. El número de puntos N se eligió de tal forma que los valores de la energía obtenidos con N y $N + \Delta N$, no diferían más allá de la precisión requerida (5 cifras decimales), elegida con base en las cifras decimales que son comparables con resultados experimentales dentro de la aproximación de B-O. Además se llevo a cabo un escalamiento de los puntos de la malla con la introducción del parámetro h (4.35), cuya elección se escogió de tal manera que los valores de la energía se mantuvieran estables para valores entre h y $h+\Delta h$. Los estados rovibracionales calculados se compararon con los resultados experimentales obtenidos en [7].

Los resultados mostraron que la curva de energía potencial para la estado base $X^{1}\Sigma^{+}$ de la molécula diatómica de HF soporta 21 estados vibracionales ($\nu = 0, \dots, 20, L = 0$). Estos se muestran en la columna 3 de la Tabla 5.1, así como los resultados obtenidos a partir de datos experimentales en [7] (columna 2). Como se puede notar, el error absoluto resulta ser del orden de ~ 10^{-5} (columna 4) estando en excelente acuerdo.

14		E [Hartree]	
ν	Ref. [7]	$E_{(\nu,0)}$	E. absoluto
0	-0.21556	-0.21556	1E-06
1	-0.19751	-0.19751	1E-06
2	-0.18025	-0.18024	1E-05
3	-0.16375	-0.16373	2E-05
4	-0.14799	-0.14797	2E-05
5	-0.13295	-0.13293	2E-05
6	-0.11863	-0.11861	2E-05
7	-0.10502	-0.10499	3E-05
8	-0.09210	-0.09207	3E-05
9	-0.07987	-0.07984	3E-05
10	-0.06834	-0.06831	3E-05
11	-0.05752	-0.05748	4E-05
12	-0.04742	-0.04739	3E-05
13	-0.03807	-0.03804	3E-05
14	-0.02951	-0.02949	2E-05
15	-0.02181	-0.02178	3E-05
16	-0.01502	-0.01500	2E-05
17	-0.00928	-0.00925	3E-05
18	-0.00471	-0.00469	2E-05
19	-0.00153	-0.00152	1E-05
20	-0.00010	-0.00007	3E-05

Tabla 5.1: HF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados obtenidos en la referencia [7] y obtenidos en el presente trabajo.

El cálculo de los estados rovibracionales se realiza resolviendo (5.1) con $L \neq 0$. En total el estado base de la molécula HF soporta 724 estados rovibracionales (ν, L), con 56 estados rotacionales ($\nu = 0, L = 0, \dots, 55$). Dichos estados se presentan en el Apéndice A y son representados en rojo en el histograma de la Figura 5.1, mientras que en azul los obtenidos en [7]. El número extra de estados reportados en [7] es resultado de tomar en cuenta correcciones adiabáticas a la aproximación de B-O de la forma a continuación presentada en [7],

$$V(R) = V^{\rm BO}(R) + \frac{V^{\rm H}(R)}{M'_{\rm H}} + \frac{V^{\rm F}(R)}{M'_{\rm F}}$$
(5.2)

Figura 5.1: HF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del momento angular L. Los estados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resultados numéricos se muestran en el Apéndice A. Los estados en azul sobre la linea continua en rojo corresponden a estados cuasiligados.

donde $V^{\text{BO}}(R)$ es el potencial en la aproximación de B-O, M'_{H} y M'_{F} son las masas atómicas del hidrógeno y flúor, respectivamente. $V^{\text{H}}(R)$ y $V^{\text{F}}(R)$ son funciones que representan las correcciones adiabáticas debidas a considerar la masa finita de los núcleos. Aunque en la expresión (5.2) se muestra explícitamente el término correspondiente a la aproximación de B-O y las correcciones adiabáticas, en la referencia [7] se usa un potencial de Lennard-Jones modificado para representar a V(R) sin hacer una diferencia entre estos términos. Es importante hacer notar la diferencia entre el número de estados para $L \neq 0$ con el presentado en [7]. Los estados extra de la referencia [7] son *estados cuasiligados*, es decir estados cuya energía es mayor que la energía de disociación de la molécula.

En los siguientes capítulos se aprovecha la flexibilidad de la metodología implementada para estudiar a los sistemas isotopólogos de la molécula de HF, es decir las moléculas de fluoruro de deuterio (DF) y fluoruro de tritio (TF).

Molécula de fluoruro de deuterio (DF)

6.1. El estado base $X^1\Sigma^+$ de la molécula de DF

Dentro de la aproximación de B-O, se puede extender el estudio a los sistemas isotopólogos de HF, modificando la masa reducida en la ecuación de Schrödinger (4.19). El espectro de la molécula de fluoruro de deuterio (DF) se obtiene al resolver la ecuación:

$$\sum_{j=1}^{N} C_j \left[\frac{1}{2\mu_{\rm DF}} T_{ij} + \left(\frac{L(L+1)}{2\mu_{\rm DF} x_i^2} + E_{\{3,2\}}(x_i) \right) \delta_{ij} \right] = E_{(\nu,0)} C_i, \tag{6.1}$$

donde $\mu_{\rm DF} = M_{\rm D}M_{\rm F}/(M_{\rm D} + M_{\rm F})$ es la masa reducida, con $M_{\rm D} = 3670.4830$ u.a. [30] la masa del deuterón. Debido a que el estudio se realiza dentro de la aproximación de B-O, el potencial de interacción nuclear $E_{\{3,2\}}$ resulta ser el mismo que para la molécula de HF (3.20) ya que el sistema electrónico es el mismo.

Para resolver la ecuación (6.1) se hizo uso nuevamente del método de malla de Lagrange. Para este sistema se encontró que la curva de energía potencial del estado base soporta 29 estados vibracionales ($\nu = 0, \dots, 28, L = 0$), 8 más que los que mantiene ligados la molécula de HF. Estos se reportan en la Tabla 6.1 (columna 3), junto con los obtenidos a partir de datos experimentales presentados en la referencia [6] (columna 2). El error absoluto resulta ser del orden $\sim 10^{-5}$, como se muestra en la columna 4.

Los estados rovibracionales se obtiene al resolver la ecuación (6.1), con $L \neq 0$. Se obtuvo que en total, el estado base $X^1\Sigma^+$ soporta 1376 estados rovibracionales (ν, L) , con 77 de ellos estados rotacionales $(\nu = 0, L = 0, \dots, 76)$. Los resultados obtenidos en el presente trabajo del espectro rovibracional de la molécula de DF se presentan en el Apéndice B. Dichos resultados se representan en rojo en el histograma de la Figura 6.1, mientras que en azul los reportados en la referencia [7], donde se consideran correcciones

14		E [Hartree]	
ν	Ref. [7]	$E_{(\nu,0)}$	E. absoluto
0	-0.21806	-0.21812	6E-05
1	-0.20482	-0.20487	5E-05
2	-0.19199	-0.19204	5E-05
3	-0.17957	-0.17962	5E-05
4	-0.16755	-0.16760	5E-05
5	-0.15593	-0.15597	4E-05
6	-0.14469	-0.14473	4E-05
7	-0.13383	-0.13387	4E-05
8	-0.12335	-0.12339	4E-05
9	-0.11324	-0.11328	4E-05
10	-0.10349	-0.10353	4E-05
11	-0.09411	-0.09415	4E-05
12	-0.08510	-0.08513	3E-05
13	-0.07645	-0.07648	3E-05
14	-0.06817	-0.06819	2E-05
15	-0.06026	-0.06028	2E-05
16	-0.05272	-0.05275	3E-05
17	-0.04558	-0.04560	2E-05
18	-0.03883	-0.03885	2E-05
19	-0.03249	-0.03251	2E-05
20	-0.02659	-0.02661	2E-05
21	-0.02115	-0.02117	2E-05
22	-0.01620	-0.01621	1E-05
23	-0.01178	-0.01179	1E-05
24	-0.00794	-0.00795	1E-05
25	-0.00475	-0.00475	1E-06
26	-0.00228	-0.00228	1E-06
27	-0.00066	-0.00066	1E-06
28	-0.00006	-0.00002	4E-05

Tabla 6.1: DF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados experimentales de la referencia [7] y obtenidos en el presente trabajo.

fuera de la aproximación de B-O. De manera similar a lo observado en la molécula de HF, los estados extra presentados en [7] para DF entre L = 15 y L = 60 corresponden a *estados cuasiligados*, mientras que los demás son *estados ligados*. Los estados ligados obtenidos en el presente trabajo están en completo acuerdo con los reportados en [7].

Figura 6.1: DF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del momento angular L. Los resultados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resultados numéricos se muestran en el Apéndice B. Los estados en azul sobre la linea continua en rojo corresponden a estados cuasiligados.

Molécula de fluoruro de tritio (TF)

7.1. Estados rovibracionales de la molécula de TF

En esta sección se analiza otro sistema isotopólogo de HF: la molécula de fluoruro de tritio (TF), un sistema con dos neutrones extras respecto a la molécula de HF. De manera similar al caso de la molécula de DF, para el estudio de TF se modifica la masa reducida en la ecuación de Schrödinger (4.19), obteniendo una ecuación análoga a (5.1). La ecuación a resolver para obtener el espectro rovibracional de TF, es

$$\sum_{j=1}^{N} C_j \left[\frac{1}{2\mu_{\rm TF}} T_{ij} + \left(\frac{L(L+1)}{2\mu_{\rm TF} x_i^2} + E_{\{3,2\}}(x_i) \right) \delta_{ij} \right] = E_{(\nu,L)} C_i, \tag{7.1}$$

donde $\mu_{\rm TF} = M_{\rm T}M_{\rm F}/(M_{\rm T} + M_{\rm F})$ es la masa reducida, y $M_{\rm T} = 5496.9215$ u.a. [30] es la masa del tritón. Al igual que sucede con DF, $E_{\{3,2\}}$ es la curva de energía potencial obtenida para HF (3.20). Esto debido a que dentro de la aproximación de B-O, el estudio del movimiento electrónico es el mismo que el de la molécula de HF.

Al resolver la ecuación (7.1) con el método de malla de Lagrange, se encontró que la curva de energía potencial soporta 35 estados vibracionales ($\nu = 0, \dots, 34, L = 0$), 6 y 13 estados adicionales respecto a los obtenidos para HF y DF, respectivamente. Estos se presentan en la columna 3 de la Tabla 7.1, así como los reportados en la referencia [7] (columna 2) y el error absoluto en la última columna, el cual resulta ser de ~ 10^{-5} , estando los resultados obtenidos en el presente trabajo en muy buen acuerdo con los reportados en [7].

Por otro lado, los estados rovibracionales se obtienen al resolver la ecuación (7.1), para $L \neq 0$. Resultando en un total de 1967 estados rovibracionales (ν, L), con 93 de ellos puramente rotacionales ($\nu = 0, L = 0, \dots, 92$). Al igual que con las moléculas de HF y DF, se compara el número de estados obtenidos con los presentados en la referencia [7], en este caso solo la predicción del número de estados para L = 0 en [7] es comparable con

Figura 7.1: TF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del momento angular L. Los resultados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resultados numéricos se muestran en el Apéndice C.

los obtenidos en el presente trabajo, para $L \neq 0$ la comparación es posible solo entre un número muy limitado de estados rovibracionales. En el histograma de la Figura 7.1, se representan en rojo los estados obtenidos en este trabajo y en azul los datos reportados en la referencia [7]. Los resultados de los estados rovibracionales de TF se presentan en el Apéndice C.

En la Tabla 7.2 se presenta la comparación del número total de estados vibracionales, rotacionales y rovibracionales de las moléculas de fluoruro de hidrógeno (HF), fluoruro de deuterio (DF) y fluoruro de tritio (TF). Se puede notar que conforme se adicionan más neutrones en los núcleos del átomo de hidrógeno, el número de estados ligados incrementa. La molécula DF prácticamente duplica el número total de estados rovibracionales de HF, mientras que TF tiene un número alrededor del triple de los niveles de HF. Siendo una conclusión importante que el espectro rovibracional depende de la masa reducida de los núcleos.

Es de resaltar que aunque la curva de energía potencial es la misma para HF y sus sistemas isotopólogos, no existen relaciones de escalamiento entre las ecuaciones de los sistemas, así pues no se pueden obtener los niveles de energía de DF o TF multiplicando a los niveles de energía de HF por algún factor.

	E [Hartree]												
ν	Ref. [7]	$E_{(\nu,0)}$	E. absoluto										
0	-0.21915	-0.21922	7E-05										
1	-0.20801	-0.20809	8E-05										
2	-0.19717	-0.19724	7E-05										
3	-0.18662	-0.18669	7E-05										
4	-0.17635	-0.17641	6E-05										
5	-0.16635	-0.16642	7E-05										
6	-0.15664	-0.15670	6E-05										
7	-0.14719	-0.14725	6E-05										
8	-0.13801	-0.13807	6E-05										
9	-0.12909	-0.12915	6E-05										
10	-0.12044	-0.12050	6E-05										
11	-0.11204	-0.11210	6E-05										
12	-0.10390	-0.10396	6E-05										
13	-0.09602	-0.09607	5E-05										
14	-0.08839	-0.08844	5E-05										
15	-0.08102	-0.08107	5E-05										
16	-0.07390	-0.07395	5E-05										
17	-0.06704	-0.06709	5E-05										
18	-0.06044	-0.06049	5E-05										
19	-0.05411	-0.05415	4E-05										
20	-0.04804	-0.04808	4E-05										
21	-0.04225	-0.04229	4E-05										
22	-0.03674	-0.03678	4E-05										
23	-0.03153	-0.03157	4E-05										
24	-0.02662	-0.02666	4E-05										
25	-0.02204	-0.02207	3E-05										
26	-0.01779	-0.01782	3E-05										
27	-0.01391	-0.01393	2E-05										
28	-0.01041	-0.01042	1E-05										
29	-0.00733	-0.00734	1E-05										
30	-0.00471	-0.00472	1E-05										
31	-0.00260	-0.00261	1E-05										
32	-0.00107	-0.00107	1E-06										
33	-0.00024	-0.00020	4E-05										
34	-0.00002	-0.00002	1E-06										

Tabla 7.1: TF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados experimentales reportados en la referencia [7] y obtenidos en el presente trabajo.

Estados	HF	DF	TF
Vibracionales	21	29	35
Rotacionales	56	77	93
Rovibracionales	724	1377	1967

Tabla 7.2: Comparación del número de estados vibracionales, rotacionales y rovibracionales, entre las moléculas de HF, DF y TF.

Conclusiones y Perspectivas

En este trabajo, dentro de la aproximación de B-O, se construyó una expresión analítica de la curva de energía potencial para el estado base $X^1\Sigma^+$ de la molécula diatómica de fluoruro de hidrógeno (HF), para todo el dominio de distancias internucleares $R \in$ $(0, \infty)$. La aproximación de la curva de energía potencial esta basada en un aproximante de Padé de dos puntos. Destacando que esta expresión reproduce de manera correcta el comportamiento asintótico para pequeñas (3.6) y grandes (3.11) distancias internucleares R. Resulta importante enfatizar que los parámetros libres presentes en la expresión analítica de la curva de energía potencial (3.20) se fijaron mediante un ajuste con datos obtenidos en [7] a partir de resultados experimentales sin tener que recurrir al uso resultados numéricos. Con la expresión analítica para $E_{\{3,2\}}(R)$ (3.20), se encontraron la posición y la profundidad del mínimo de la curva ($R_{eq} = 1.73254$ u.a., $E_{mín} = -0.224913$ Hartree), los cuales reproducen correctamente no menos de 4 dígitos decimales, respecto de los resultados numéricos [7].

Con la forma analítica de la curva de energía potencial (3.20) el espectro rovibracional de la molécula se obtuvo al resolver la ecuación de Schrödinger para movimiento nuclear. Para ello, se empleó el método de malla de Lagrange, encontrando que el estado base $X^1\Sigma^+$ de la curva de energía potencial de HF soporta 21 estados vibracionales ($\nu = 0, \dots, 20, L = 0$), 56 rotacionales ($\nu = 0, L = 0, \dots, 55$) y 724 rovibracionales (ν, L).

La metodología aplicada al estudio de la molécula HF permitió calcular el espectro rovibracional de los sistemas isotopólogos de dicha molécula. Con una simple modificación de la masa reducida en la ecuación de Schrödinger, se estudiaron los sistemas moleculares de DF y TF, los cuales soportan 29 y 35 estados vibracionales $E_{(\nu,0)}$, 77 y 93 estados puramente rotacionales $E_{(0,L)}$, así como un total de 1377 y 1967 estados rovibracionales, respectivamente. Se encontró que el espectro rovibracional depende de la masa reducida de los núcleos. Se puede mencionar que si se consideran otros sistemas isotopólogos de HF con isótopos del átomo de flúor (aunque ninguno presente en la naturaleza tiene una vida media estable [33]), la masa reducida entre los núcleos se vería modificada y con ella el número de estados rovibracionales. En general, a mayor masa nuclear, mayor número de estados rovibracionales.

Finalmente, la metodología desarrollada para los sistemas con contenido de flúor, fluoruro de hidrógeno (HF), fluoruro de deuterio (DF) y fluoruro de tritio (TF) puede ser aplicada al estudio de cualquier molécula diatómica heteronuclear (con núcleos distintos). Por otro lado, el estudio de las moléculas diatómicas homonucleares (con núcleos iguales), es posible abordarlo siguiendo el mismo camino mostrado. Sin embargo, en el análisis de este tipo de sistemas resulta necesario tomar en cuenta fenómenos de tunelaje, términos exponenciales pequeños, entre otros, pero principalmente la simetría ante el intercambio de los núcleos. Esta simetría tiene implicaciones importantes en la estructura de los niveles electrónicos de la molécula. Actualmente un caso de gran interés es el dímero de cromo Cr_2 [34], siendo un reto el cálculo de la curva de energía potencial debido a la complejidad del sistema.

En general, la caracterización de curvas de energía potencial de las moléculas para distintos estados ayuda al estudio de probabilidades de transición, cuyos resultados pueden ser aplicados en otros campos.

APÉNDICE \mathbf{A}

Estados rovibracionales de HF

	$\nu = 20$	-0.00007 -0.00005 -0.00002																																						
	$\nu = 19$	-0.00152 -0.00148 -0.00140	-0.00127 -0.00111	-0.00091	-0.00043	-0.00015																																		
	$\nu = 18$	-0.00469 -0.00463 -0.00451	-0.00434 -0.00412	-0.00383	-0.00312	-0.00269 -0.00223	-0.00172	-0.00118	-0.00004																															
	$\nu = 17$	-0.00925 -0.00918 -0.00904	-0.00883 -0.00856	-0.00822	-0.00734	-0.00681 -0.00622	-0.00557	-0.00488	-0.00335	-0.00253	-0.00081																													
	$\nu = 16$	-0.01500 -0.01492 -0.01476	-0.01452 -0.01421	-0.01381	-0.01280	-0.01219 -0.01150	-0.01075	-0.00993	-0.00812	-0.00713	-0.00500	-0.00389	-0.00274	-0.00038																										
	$\nu = 15$	-0.02178 -0.02169 -0.02152	-0.02125 -0.02090	-0.02046	-0.01934	-0.01865 -0.01788	-0.01704	-0.01612	-0.01407	-0.01294	-0.01050	-0.00920	-0.00785	-0.00503	-0.00357	-0.00209	-0.0000-0-																							
	$\nu = 14$	-0.02949 -0.02939 -0.02920	-0.02891 -0.02853	-0.02805	-0.02682	-0.02607 -0.02523	-0.02431	-0.02330	-0.02104	-0.01979	-0.01547	-0.01563	-0.01412	-0.01092	-0.00925	-0.00754	-0.00404	-0.00225	-0.00046																					
	$\nu = 13$	-0.03804 -0.03794 -0.03773	-0.03742 -0.03701	-0.03650	-0.03517	-0.03437 -0.03346	-0.03246	-0.03137	-0.02892	-0.02757	-0.02614 -0.02462	-0.02304	-0.02138	-0.01786	-0.01601	-0.01411	-0.01210.0-	-0.00815	-0.00609	-0.00402	06100.0-																			
	$\nu = 12$	-0.04739 -0.04728 -0.04706	-0.04673 -0.04629	-0.04574	-0.04309 -0.04433	-0.04347 -0.04250	-0.04143	-0.04027	-0.03764	-0.03619	-0.03405 -0.03303	-0.03132	-0.02953	-0.02572	-0.02372	-0.02165	-0.01734	-0.01510	-0.01283	-0.01052	-0.00582	-0.00344	-0.00106																	
[e]	$\nu = 11$	-0.05748 -0.05737 -0.05714	-0.05679 -0.05632	-0.05574	-0.05425	-0.05333 -0.05231	-0.05117	-0.04993	-0.04715	-0.04560	-0.04390 -0.04223	-0.04041	-0.03850	-0.03442	-0.03227	-0.03005	-0.02540	-0.02298	-0.02051	-0.01800	-0.01284	-0.01022	-0.00757	-0.00491	-0.00224															
v,L) [Hartre	$\nu = 10$	-0.06831 -0.06819 -0.06794	-0.06757	-0.06647	-0.06489	-0.06393 -0.06285	-0.06165	-0.06034	-0.05740	-0.05576	-0.05403 -0.05219	-0.05026	-0.04823	-0.04011	-0.04162	-0.03925	-0.03429	-0.03170	-0.02905	-0.02635	-0.02079	-0.01794	-0.01506	-0.01215	-0.00628	-0.00333	-0.00039													
$E_{(i)}$	$\nu = 9$	-0.07984 -0.07971 -0.07945	-0.07907 -0.07855	-0.07791	-0.07625	-0.07524 -0.07410	-0.07284	-0.07146	-0.06836	-0.06664	-0.06288	-0.06084	-0.05870	-0.05413	-0.05171	-0.04920	-0.04001	-0.04120	-0.03838	-0.03550	-0.02957	-0.02652	-0.02343	-0.02030	-0.01394	-0.01073	-0.00751	-0.00428												
,	$\nu = 8$	-0.09207 -0.09193 -0.09166	-0.09126 -0.09072	-0.09005	-0.08831	-0.08724 -0.08605	-0.08473	-0.08329	-0.08003	-0.07823	-0.07427	-0.07213	-0.06988	-0.06507	-0.06252	-0.05988	-0.05433	-0.05143	-0.04846	-0.04541	-0.03912	-0.03588	-0.03259	-0.02925	-0.02246	-0.01901	-0.01554	-0.01205 -0.00855	-0.00505	-0.00155										
	$\nu = 7$	-0.10499 -0.10485 -0.10457	-0.10415 -0.10358	-0.10288	-0.10204	-0.09995 -0.09870	-0.09732	-0.09580	-0.09240	-0.09051	-0.08636 -0.08636	-0.08412	-0.08176	-0.07672	-0.07404	-0.07127	-0.06543	-0.06238	-0.05925	-0.05604	-0.04940	-0.04598	-0.04250	-0.03897	-0.03176	-0.02809	-0.02439	-0.02066	-0.01315	-0.00938	-0.00185	POTOD'D-								
,	$\nu = 6$	-0.11861 -0.11846 -0.11817	-0.11773 -0.11714	-0.11641	-0.11451	-0.11334 -0.11204	-0.11059	-0.10902	-0.10546	-0.10348	-0.10138 -0.09915	-0.09680	-0.09433	-0.08905	-0.08625	-0.08334	-0.07723	-0.07403	-0.07074	-0.06737	-0.06039	-0.05680	-0.05313	-0.04941	-0.04179	-0.03791	-0.03400	-0.03004 -0.02606	-0.02205	-0.01803	-0.01399	-0.00592	-0.00190							
	$\nu = 5$	-0.13293 -0.13278 -0.13247	-0.13201 -0.13140	-0.13063	-0.12865	-0.12744	-0.12457	-0.12292	-0.11921	-0.11715	-0.11495 -0.11262	-0.11017	-0.10759	-0.10208	-0.09915	-0.09611	-0.08280.0-	-0.08636	-0.08292	-0.07939	-0.07208	-0.06830	-0.06446	-0.06055	-0.05254	-0.04846	-0.04433	-0.04015 -0.03595	-0.03171	-0.02745	-0.02310	-0.01457	-0.01027	-0.00598	-0.00170					
	$\nu = 4$	-0.14797 -0.14781 -0.14749	-0.14701 -0.14637	-0.14557	-0.14402 -0.14351	-0.14224 -0.14082	-0.13926	-0.13754	-0.13367	-0.13152	-0.12923 -0.12680	-0.12424	-0.12155	-0.11580	-0.11274	-0.10957	-0.10289	-0.09939	-0.09579	-0.09210	-0.08445	-0.08050	-0.07647	-0.07237	-0.06398	-0.05969	-0.05535	-0.05097	-0.04208	-0.03758	-0.03307	-0.02397	-0.01941	-0.01485	-0.01030 -0.00575	-0.00123				
,	$\nu = 3$	-0.16373 -0.16356 -0.16323	-0.16273 -0.16207	-0.16124	-0.15909	-0.15777 -0.15629	-0.15466	-0.15287	-0.14884	-0.14660	-0.14421 -0.14169	-0.13902	-0.13622	-0.13022	-0.12703	-0.12372	-0.11676	-0.11311	-0.10935	0.101550	-0.09751	-0.09338	-0.08917	-0.08488	-0.07610	-0.07161	-0.06707	-0.06247 -0.05783	-0.05314	-0.04842	-0.04367	-0.03409	-0.02928	-0.02446	-0.01964 -0.01483	-0.01002	-0.00523	05000.0-		
,	$\nu = 2$	-0.18024 -0.18006 -0.17972	-0.17920 -0.17851	-0.17764	-0.17541	-0.17404 -0.17250	-0.17080	-0.16894	-0.16474	-0.16241	-0.15730	-0.15452	-0.15161	-0.14536	-0.14204	0.13859	-0.13133	-0.12753	-0.12361	0.11547	-0.11126	-0.10695	-0.10256	-0.09808	0.08890.0-	-0.08421	-0.07946	-0.07465 -0.06979	-0.06488	-0.05994	-0.04994 0.04004	-0.04490	-0.03985	-0.03478	-0.02970	-0.01954	-0.01448	-0.00440		
	$\nu = 1$	-0.19751 -0.19733 -0.19697	-0.19643 -0.19571	-0.19481	-0.19249	-0.19106 -0.18946	-0.18770	-0.18576	-0.18140	-0.17897	-0.17365	-0.17077	-0.16773	-0.10400	-0.15777	-0.15418	-0.14662	-0.14266	-0.13859	-0.13440	-0.12571	-0.12122	-0.11664	-0.11197	-0.10240	-0.09750	-0.09254	-0.08751 -0.08243	-0.07730	-0.07213	-0.06167	-0.05639	-0.05109	-0.04577	-0.04044 -0.03510	-0.02976	-0.02443	-0.01379	-0.00324	
	$\nu = 0$	-0.21556 -0.21538 -0.21500	-0.21444 -0.21369	-0.21276	-0.21104 -0.21035	-0.20887 -0.20721	-0.20537	-0.20336	-0.19882	-0.19630	-0.19362	-0.18777	-0.18461	-0.17785	-0.17425	0.17052	-0.16265	-0.15853	-0.15429	-0.14993	-0.14040	-0.13620	-0.13143	-0.12657	-0.11658	-0.11148	-0.10630	-0.10106	-0.09040	-0.08500	-0.07406 -0.07406	-0.06855	-0.06300	-0.05743	-0.05185 -0.04625	-0.04065	-0.03505	-0.02340 -0.02388	-0.01831 -0.01276	-0.00724
Г		0 1 2	с 4	ນ	o 1-	ж с.	10	11 S	13.13	14	16	17	81 2	50	21	88	3 2	25	26	27	88	8	31	32	8 2	58	36	38	39	40	41	14	44	45	46	48	49	8 12 2	23 23	54 55

Tabla A.1: HF: Energías	rovibracionales <i>B</i>	$E_{(\nu,)}$ del es	stado base .	$X^1\Sigma^+$

Apéndice ${f B}$

Estados rovibracionales de DF

90	07 = 70	20000.0-	-0.00001																																																																		
ł	0 00000	-0.00006	-0.00064	-0.00061	-0.00056	-0.00049	-0.00041	-0.00031	-0.00020	0 MMM '0-																																																											
90	07 = 70	-0.00228	-0.00226	-0.00221	-0.00213	-0.00204	-0.00191	-0.00177	-0.00161	24100/0-	17100/0	0.00075	0.00050	000000	1-2000-0-																																																						
aŭ	0.00477	-0.004/5	-0.00472	-0.00466	-0.00456	-0.00444	-0.00429	-0.00411	-0.00391	100000	18-000-0	010000	20200.0-	0100013	-0.00176	-0.00137	70000-0-	-0.00055	-0.00013																																																		
10	0.00707	-0.00/95	-0.00791	-0.00784	-0.00773	-0.00760	-0.00742	-0.00721	-0.00697	0.000.00	-0.00008	0.000.00	-0.00530	-0.00487	-0.00442	-0.00395	-0.00345	-0.00294	-0.00240	-0.00185	-0.00128	-0.00071	-0.00013																																														
50	0 01170	6/110.0-	-0.01175	-0.01167	-0.01156	-0.01140	-0.01120	-0.01097	0/010/0-	05010.0-	-00000-0	106000.0	-0.00881	-0.00833	-0.00582	-0.00798	-0.00671	-0.00611	-0.00548	-0.00483	-0.00416	-0.00347	-0.00276	-0.00204	-0.00131	-0.000.0-																																											
00	D = 22	12910.0-	-0.01617	-0.01609	-0.01596	-0.01579	-0.01558	-0.01532	-0.01503	6051010-	10610.0	0.6610.0	10.01905	67610.0-	-0.01185	-0.01125	-0.01061	-0.00995	-0.00925	-0.00852	-0.00776	-0.01112	-0.00617	-0.00534	-0.00449	-0.003024	10000-	200000-	-0.00005																																								
	D = 21	/1120.0-	-0.02112	-0.02103	-0.02089	-0.02071	-0.02048	-0.02021	-0.01989	2661010.0	21610.0-	0.01010-0	0101010-	20210.0-	-0.01645	-0.01580	-0.01511	-0.01438	-0.01361	-0.01281	-0.01198	-0.01112	-0.01022	-0.00930	-0.00836	0.000.00	0.000	-0.00035	-0.00331	-0.00225	-0.00119	-0.00013																																					
00	07 = 7	10020.0-	-0.02656	-0.02647	-0.02632	-0.02612	-0.02588	-0.02559	-0.02525	00420.0-	26620.0	P002000-	28020.0-	0077010-	-0.02157	10120.0-	-0.02013	-0.01934	-0.01852	-0.01766	-0.01676	-0.01582	-0.01485	-0.01385	-0.01282	0/110/0-	100100-	0.0800.0-	-0.00726	-0.00608	-0.00489	-0.00368	-0.00247	-0.00125	-0.00003																																		
ş	0 000F1	-0.03251	-0.03246	-0.03236	-0.03220	-0.03200	-0.03174	-0.03143	-0.03107	0000000	02060.0-	0.00019	61820.0-	20020.0-	-0.02717	-0.02643	-0.02563	-0.02480	-0.02392	-0.02300	-0.02204	-0.02104	-0.02001	-0.01893	-0.01782	0.01650	0.011900	0.01306	-0.01180	-0.01052	-0.00921	-0.00789	-0.00655	-0.00519	-0.00382	-0.00245	-0.00107																																
	0 00001	-0.03885	-0.03880	-0.03869	-0.03852	-0.03831	-0.03803	-0.03771	-0.03733	-0.00000	18000.0-	0.03590	-0.03465	-0.03306	-0.03322	-0.03243	-0.03160	-0.03072	-0.02979	-0.02881	-0.02780	-0.02674	-0.02564	-0.02450	-0.02332	0.02210	1007070-	-0.01894	-0.01689	-0.01551	-0.01410	-0.01267	-0.01121	-0.00974	-0.00825	-0.00674	-0.00522	-0.00216	01700.0-	00000-0-																													
ţ	0.04500	-0.04560	-0.04554	-0.04543	-0.04526	-0.04503	-0.04474	-0.04440	-0.04401	2004000	0005010-	0.04140	0.01100-	07150.0-	-0.03970	-0.03887	-0.03799	-0.03706	-0.03609	-0.03506	-0.03399	-0.03288	-0.03172	-0:02091	-0.02927	-0.02798	002000-	-0.02380	-0.02245	-0.02099	-0.01949	-0.01796	-0.01640	-0.01482	-0.01322	-0.01160	-0.00995	-0.00663	-0.00.05	-0.00397	-0.00158																												
5	0 01 0 0	6/2000-	-0.05269	-0.05257	-0.05239	-0.05215	-0.05185	-0.05150	-0.05108	1000000	0000000	0.049.95	-0.04815	0104230	-0.04658	-0.04572	-0.04480	-0.04383	-0.04281	-0.04173	-0.04061	-0.03944	-0.03822	-0.03696	-0.03565	0.029.00	002000-	05160.0-	-0.02848	-0.02693	-0.02534	-0.02372	-0.02208	-0.02040	-0.01869	-0.01696	-0.01521	-0.01165	00110.0-	-0.00809	-0.00619	-0.00436	-0.00252	-0.00068																									
;	0 0 0 0 0 0	-0.06028	-0.06022	-0.06010	-0.05991	-0.05966	-0.05935	-0.05898	-0.05855	0.06751	10/00/0-	0.05899	-0.05540	-0.05470	-0.05386	-0.05296	-0.05200	-0.05099	-0.04992	-0.04880	-0.04763	-0.04641	-0.04513	-0.04381	-0.04244	-0.04103	000000	-0.05651	-0.03492	-0.03330	-0.03163	-0.02993	-0.02819	-0.02643	-0.02463	-0.02280	-0.02094	-0.01716	01/10/0-	-0.01329	-0.01134	-0.00937	-0.00739	-0.00541	-0.00143																								
[]	P = 14	-0.06819	-0.06813	-0.06800	-0.06781	-0.06755	-0.06723	-0.06684	-0.06640	0.00000	0.06467	105-00-0-	-0.06399	-0.06940	-0.06152	20100.0-	-0.05959	-0.05853	-0.05742	-0.05626	-0.05504	-0.05376	-0.05244	-0.05106	-0.04963	0.04669	0.04500	-0.049000	-0.04178	-0.04008	-0.03834	-0.03656	-0.03474	-0.03288	-0.03099	-0.02907	-0.02712	-0.02313	01160.0-	-0.01905	-0.01697	-0.01488	-0.01278	-0.01066	-0.00640	-0.00426	-0.00213	-0.00004																					
(L) [Hartre	0.07040	-0.0/048	-0.07641	-0.07628	-0.07608	-0.07581	-0.07548	-0.07508	-0.07461	0.07940	0.07000	0102010-0-	01210.0-	-0.07047	-0.06956	-0.06858	-0.06755	-0.06645	-0.06530	-0.06409	-0.06282	-0.06150	-0.06012	-0.05869	-0.05720	0.05.409	0.05040	-0.05076	-0.04903	-0.04726	-0.04544	-0.04358	-0.04168	-0.03974	-0.03777	-0.03576	-0.03371	-0.02953	0.0220.0-	-0.02594	-0.02306	-0.02085	-0.01863	-0.01639	-0.01187	-0.00960	-0.00732	-0.00504	-0.00048																				
E(1	0.00710	-0.08513	-0.08506	-0.08492	-0.08472	-0.08444	-0.08409	-0.08368	-0.08320	070010-	2010010-	09080.0	0000010-	-0.07801	16910.0-	-0.076950	-0.07588	-0.07475	-0.07355	-0.07230	-0.07098	-0.06961	-0.06818	-0.06669	-0.06515	00500.0-	10000 0	-0.05846	-0.05666	-0.05482	-0.05293	-0.05099	-0.04901	-0.04700	-0.04494	-0.04284	-0.04071	-0.03634	11/20/07-	-0.03185	-0.02956	-0.02725	-0.02492	-0.02256	-0.01780	-0.01540	-0.01299	-0.01057	-0.00572	-0.00329	-0.00087																		
:	7 = 11	61560.0-	-0.09408	-0.09393	-0.09372	-0.09343	-0.09308	-0.09265	-0.09215	200000	0.6000.0	10.00046	0.4600.0-	20000-0-	-0.08673	0.08569	-0.08458	-0.08341	-0.08217	-0.08087	-0.07951	-0.07809	-0.07661	10670.0-	-0.07347	-0.07011	1101000-	0.06653	-0.06467	-0.06275	-0.06079	-0.05878	-0.05673	-0.05463	-0.05249	-0.05031	-0.04809	-0.04354	101010-	12150.0-	-0.03647	-0.03406	-0.03162	-0.02915	-0.02416	-0.02164	-0.01911	-0.01656	-0.01400	-0.00887	-0.00629	-0.00116																	
9	01010	-0.10353	-0.10345	-0.10331	-0.10309	-0.10279	-0.10242	-0.10198	-0.10147	000010	770010	0.00980	-0.00789	20160.0-	-0.09.587	-0.09479	-0.09364	-0.09243	-0.09115	-0.08981	-0.08840	-0.08693	-0.08540	-0.08381	-0.08215	-0.05044	1001000-	-0.07497	-0.07304	-0.07106	-0.06902	-0.06694	-0.06481	-0.06263	-0.06041	-0.05815	-0.05585	-0.05112	21100.0-	-0.04625	-0.04377	-0.04125	-0.03871	-0.03614	-0.03093	-0.02830	-0.02564	-0.02297	-0.01759	-0.01489	-0.01218	1#600.0-	-0.00405	-0.00135															
¢	0 11000	-0.11328	-0.11320	-0.11305	-0.11282	-0.11251	-0.11213	-0.11168	-0.11115	50001 0	0.100110	11601.0-	-0.10738	-0.10641	-0.10537	-0.10425	-0.10307	-0.10182	-0.10050	-0.09911	-0.09766	-0.09614	-0.09455	16260.0-	-0.09120	-0.08943	0.00100	-0.08377	-0.08178	-0.07972	-0.07762	-0.07546	-0.07326	-0.07100	-0.06870	-0.06636	-0.06397	-0.05907	-0.05656	-0.05409	-0.05144	-0.04883	-0.04618	-0.04351	-0.03809	-0.03534	-0.03257	-0.02979	-0.02038	-0.02134	-0.01850	-0.01280	-0.00995	-0.00710	-0.00141														
¢	0 1 0 1 0 1 0	-0.12339	-0.12331	-0.12315	-0.12292	-0.12260	-0.12221	-0.12174	-0.12119	1007110-	0.11000	POSTI 0	11731	16/11/0-	-0.11523	-0.11408	-0.11286	-0.11157	-0.11021	-0.10877	-0.10727	-0.10571	-0.10407	-0.10237	-0.10061	0.00690	0.00405	-0.00994	-0.09088	-0.08875	-0.08658	-0.08435	-0.08207	-0.07974	-0.07736	-0.07493	-0.07246	-0.06739	-0.06470	-0.06915	-0.05948	-0.05677	-0.05403	-0.05125	-0.04562	-0.04277	-0.03989	-0.03699	-0.03113	-0.02818	-0.02522	-0.01926	-0.01627	-0.01328	-0.00730	-0.00432	-0.00134												
t	0 10007	-0.1338/	-0.13379	-0.13363	-0.13339	-0.13306	-0.13266	-0.13218	-0.13161	IGNCT'N-	1001 0	19384 U	19261 0-	10/21-0-	-0.12546	04071-0-	-0.12302	-0.12169	-0.12028	-0.11881	-0.11726	-0.11564	-0.11396	-0.211.20	-0.11038	0.10655	101010	-010947	-0.10034	-0.09815	-0.09590	-0.09360	-0.09124	-0.08883	-0.08638	-0.08387	-0.08131	1/9/0.0-	-0.07010-0-	00200-	-0.06788	-0.06508	-0.06224	-0.05936	-0.05352	-0.05056	-0.04757	-0.04456	-0.03848	-0.03541	-0.03232	-0.02611	-0.02300	-0.01987	-0.01361	-0.01048	-0.00736	-0.00113											
c	0 = 7	-0.144/3	-0.14465	-0.14448	-0.14423	-0.14390	-0.14348	-0.14298	-0.14240	6/14100	21011-0	1 104-1-0-	07601.0-	07001-0-	-0.13607	-0.13485	-0.13355	-0.13218	-0.13073	-0.12921	-0.12761	-0.12595	-0.12421	-0.12240	-0.12052	20211.0-	100TT-0-	-0.11936	-0.11016	-0.10790	-0.10559	-0.10321	-0.10078	-0.09829	-0.09575	-0.09316	-0.09052	-0.08510	0.10600.0-	-0.07951	-0.07664	-0.07374	-0.07081	-0.06783	-0.06179	-0.05872	-0.05563	-0.05250	-0.04619	-0.04301	-0.03980	-0.03335	-0.03010	-0.02685	-0.02032	-0.01706	-0.01379	-0.00727	-0.00402	-0.00078									
	0 1 1 0	-0.15597	-0.15589	-0.15572	-0.15546	-0.15511	-0.15469	-0.15417	-0.15357	616210 6070T/0-	21701-0-	12101-0-	-0.14033	-0.14893	-0.14705	-0.14579	-0.14446	-0.14304	-0.14155	-0.13998	-0.13834	-0.13662	-0.13483	-0.1329/	-0.13104	0.12606	02071-0-	-0.19.969	-0.12036	-0.11803	-0.11564	-0.11319	-0.11068	-0.10811	-0.10549	-0.10282	010010-	-0.09.450	0.04-60.0-	-01.60.0-	-0.08577	-0.08277	-0.07974	-0.07356	-0.07041	-0.06724	-0.06404	-0.06081	-0.05.427	-0.05097	-0.04765	-0.04095	-0.03758	-0.03420	-0.02742	-0.02402	-0.02061	-0.01381	-0.01041	-0.00703	-0.00365	070000-							
	P = 4	-0.16/60	-0.16751	-0.16733	-0.16707	-0.16672	-0.16628	-0.16575	-0.16513	0 12924	0.16976	0.1201.0-	00101.0-	-0.15063	-0.15842	-0.15712	-0.15575	-0.15429	-0.15275	-0.15114	-0.14945	-0.14768	-0.14583	-0.14392	-0.14192	0.19779	0.10550	-0.13396	-0.13092	-0.12852	-0.12606	-0.12353	-0.12095	-0.11830	-0.11560	-0.11285	-0.11004	-0.10427	-0.10131	10101-0-	-0.09525	-0.09216	-0.08902	-0.08585	-0.07940	-0.07612	-0.07281	-0.06947	-0.06271	-0.05929	-0.05585	-0.04892	-0.04543	-0.04192	-0.03488	-0.03135	-0.02781	-0.02073	-0.01720	-0.01366	-0.01014	-0.00312							
c	0 = 4	-0.17962	-0.17953	-0.17935	-0.17907	-0.17871	-0.17826	-0.17771.0	-0.17708	0.017554	0.17464	0.17965	-0.17958	-0.17149	-0.171017	-0.16884	-0.16742	-0.16592	-0.16434	-0.16268	-0.16094	-0.15912	-0.15722	-0.15524	-0.15319	-0.1310/	0.14600	-0.14000	-0.14186	-0.13939	-0.13685	-0.13425	-0.13159	-0.12886	-0.12608	-0.12324	-0.12034	-0.11/40	-0.11134	-0.10894	-0.10510	-0.10191	-0.09867	-0.09540	-0.08874	-0.08535	-0.08193	-0.07848	-0.07150	-0.06797	-0.06441	-0.05724	-0.05363	-0.05000	-0.04270	-0.03904	-0.03537 -0.03170	-0.02803	-0.02435	-0.02068	0.01701	-0.00069	-0.00605	-0.00242					
	V = 2	10761.0-	-0.19195	-0.19176	-0.19148	11161.0-	-0.19064	-0.19008	-0.18943	-0.10705	00/01/0-	76001-0-	-0.18480	0.18360	-0.18232	-0.18095	-0.17949	-0.17795	-0.17632	-0.17461	-0.17282	-0.17095	-0.16899	-0.16696	-0.16485	016040	0400T10-	-0.15566	-0.15319	-0.15064	-0.14803	-0.14535	-0.14260	-0.13980	-0.13693	-0.13401	-0.13102	-0.12/99	-0.19175	-0.1121-0-	-0.11531	-0.11202	-0.10869	-0.10531	-0.09844	-0.09495	-0.09142	-0.08786	-0.08065	-0.07700	-0.07333	-0.06592	-0.06218	-0.05843	-0.05088	-0.04709	-0.04329 -0.03949	-0.03568	-0.03187	-0.02806	-0.02425	-0.01664	-0.01285	-0.00007	-0.00156				
	N 00.404	-0.20487	-0.20478	-0.20458	-0.20429	-0.20391	-0.20343		-0.20218	75107.0-	19001.0	102210-	0.0001.0-	2#161.0-	-0.19487	-0.19346	701010-	-0.19038	-0.18871	-0.18695	-0.18510	-0.18317	-0.18116	106/110-	-0.17690	017999	00071T0-	-0.16745	-0.16490	-0.16228	-0.15959	-0.15683	-0.15401	-0.15112	-0.14817	-0.14515	-0.14208	-0.13577	-0.12953	-0.19994	-0.12590	-0.12251	-0.11907	-0.11559	-0.10851	-0.10491	-0.10127	-0.09759	-0.09015	-0.08639	-0.08260	-0.07495	-0.07109	-0.06721	-0.05941	-0.05550	-0.05157	-0.04369	-0.03974	-0.03579	0.03184	-0.02396	-0.02002	-0.01610	-0.00828	-0.00440	-0.00053		
	0 = 0	-0.21812	-0.21802	-0.21782	-0.21753	-0.21713	-0.21664	-0.21604	-0.21536	10412-0-	E0017-0-	69116.0	9PU16 0-	06006.0-	-0.20784	-0.20639	-0.20485	-0.20322	-0.20150	-0.19969	-0.19779	-0.19581	-0.19374	6161.0-	-0.18936	-0.18705	010010-	-0.17063	-0.17701	-0.17431	-0.17154	-0.16871	-0.16580	-0.16283	-0.15979	-0.15669	-0.15353	-0.14702	-0.14360	-0.14030	-0.13686	-0.13337	-0.12983	-0.12624	-0.11894	-0.11523	-0.11148	-0.10770	-0.10002	-0.09614	-0.09223	-0.08434	-0.08035	-0.07635	-0.06830	-0.06425	-0.05612	-0.05204	-0.04796	-0.04388	0.03979	-0.03162	-0.02755	-0.02348	-0.01537	-0.01133	-0.00731	10000-	
Γ	4		-	0	ŝ	4		9 1		0 0	5	1 -	1 6	1 2	14	12	16	: 1	18	19	30	21	22.0	3	2.9	38	35	2 86	50	30	31	32	22	3	8	8	5 8	88	20 V	14	14	43	4	45	14	48	49	33	5 65	123	21	3 2	57	30.05	; 09	61	33	3	65	99	19	69	2	5 5	-13	74	22	ž	

Tabla B.1: DF: Energías rovibracionales $E_{(\nu,L)}$ del estado base $X^1\Sigma^+$

apéndice C

Estados rovibracionales de TF

0.0010 0.0008 0.0008 0.0003 0.0003 01374 01374 01375 01375 013774 013773 01218 01218 01218 01218 01218 01102 01102 01102 010977 000844 00246 00167 00087 00087 .01606 01546 01482 01482 01482 01482 01482 01482 01348 01277 01284 01281 01281 01281 01281 01354 01087 0186: 0177: 01681 01681 00758 00648 00648 00427 00427 00427 00427 235 227 227 223 203 203 203 0.00794 0.00650 0.00505 0.00360 0.00360 0.00214 0.00069 00761 00606 00450 00450 00294 00372 00215 01011 00111 00764 0051£ 00275 0924 0813 0813 0813 0813 0813 0813 01578 0153 01578 0153 0051 (2333) (2734) (2734) (25355) (25258) (23855) (11553 11553 11237 11072 11072 10730 10730 10553 10371 3733 3525 3511 3392 3392 .1921 11748 11570 11570 11570 11201 11201 11201 11201 11201 110815 10815 10815 10815 10815 2863 2413 0076 0049 115501 115501 115560 115560 115560 115560 115581 115581 115581 114585 114585 114585 114585 114585 114585 114585 114585 115785 5638 15154 14982 14805 14805 14805 14823 14623 14436 14245 14048 13847 13847 138411 138411 138411 138411 138411 138411 138411 138411 138411 138411 138411 138411 138411 14782 14771 14355 14135 14135 14135 16558 16568 16568 16568 16568 16568 16561 15754 15574 15574 15507 15508 15508 15508 15508 15508 15508 15508 15508 15508 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 16108 15307 15007 15007 15007 12320 (7763) (7763) (77657) (77657) (77367) (66949) (66949) (66949) (6653) (5578) (55).21902 (21853) (21853) (21818) (21818) (21818) (21818) (21818) (21673) (21673) (21673) (21673) (21611) (21642) (2154) (21542)

Tabla C.1: TF: Energías rovibracionales $E_{(\nu,L)}$ del estado base $X^1\Sigma^+$

Lista de Figuras

1.1.	Molécula de H ₂ : ejemplo esquemático de las etiquetas para una molécula simple, donde los núcleos están denotados por $a \ y \ b \ y$ los electrones por 1 y 2. r_{12} es la distancia entre los electrones 1 y 2, r_{ab} es la distancia entre los núcleos $a \ y \ b. \ r_{a1} \ y \ r_{a2}$ son las distancias entre el núcleo $a \ y$ los electrones 1 y 2, respectivamente. Similarmente $r_{b1} \ y \ r_{b2}$ son las distancias entre el núcleo $b \ y$ los electrones 1 y 2, respectivamente	2
2.1.	Curva de energía potencial $V(R)$ de una molécula diatómica, con <i>energía</i> de disociación de equilibrio D_{eq} . D_0 corresponde a la <i>energía de disociación</i> del estado vibracional fundamental $\nu = 0$. R_{eq} es la distancia internuclear de equilibrio. Se muestran algunos de los niveles vibracionales con número cuántico vibracional ν . Los puntos sobre la curva representan los puntos de retorno clásicos	6
2.2.	Reconstrucción de la curva de energía potencial con el método de RKR	7
3.1.	Datos experimentales de la curva de energía potencial como función de la distancia internuclear R obtenidos de la referencia [6]	11
3.2.	En la gráfica de la izquierda (en grande) se muestran en el plano comple- jo los polos simples de $E_{\{3,2\}}(R)$ (3.20). La gráfica de la derecha es una ampliación, donde se muestran los polos simples en $R = 0$ y $R = -0.0033$.	17
3.3.	Gráfica de la expresión analítica para la curva de energía potencial $E_{\{3,2\}}(R)$ (3.20) (linea continua). Los puntos representan los resultados experimen- tales de la referencia [6].	18
3.4.	Curva de energía potencial con expresión analítica del potencial de Morse (2.11) $E_{\rm M}(R) = D_{\rm eq} \left[e^{[-2\alpha(R-R_{\rm eq})]} - 2e^{[-\alpha(R-R_{\rm eq})]} \right] \operatorname{con} D_{\rm eq} = 0.229311 \mathrm{u.a.},$ $R_{\rm eq} = 1.73329 \mathrm{u.a.} \mathrm{y} \alpha = 1.23414$, representada con la linea continua. Los puntos representan los resultados experimentales de la referencia [6]	21

5.1.	HF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del mo- mento angular L . Los estados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resulta- dos numéricos se muestran en el Apéndice A. Los estados en azul sobre la linea continua en rojo corresponden a estados cuasiligados	31
6.1.	DF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del mo- mento angular L . Los resultados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resulta- dos numéricos se muestran en el Apéndice B. Los estados en azul sobre la linea continua en rojo corresponden a estados cuasiligados	35
7.1.	TF: Estados rovibracionales del estado base $X^1\Sigma^+$ como función del mo- mento angular L . Los resultados en rojo son los calculados en el presente trabajo y en azul, los obtenidos en la referencia [7] donde se toman en cuenta correcciones a la aproximación de Born-Oppenheimer. Los resulta- dos numéricos se muestran en el Apéndice C	38

Lista de Tablas

3.1.	Resultados experimentales de la curva de energía potencial de HF [6] (co- lumna 3) para los puntos de retorno $R_{mín}$ y $R_{máx}$. En las columnas 4 y 5 se muestran las evaluaciones del ajuste $E_{13,21}(R)$ (3,20) en los puntos $R_{mín}$	
3.2.	y $R_{\text{máx}}$ Comparaciones de los coeficientes E_0 , E_1 , E_2 , C_6 , C_7 y C_8 , entre expansio- nes en serie de la curva de energía potencial $E(R)$ para distancias internu- cleares pequeñas $R \to 0$ y grandes $R \to \infty$, basadas en distintos grados de	18
3.3.	los aproximantes de Padé $[N/N + 5]$ con $N = 1, 2, 3, 4, 5, 6$, respectivamente. Comparación entre la evaluación de los ajustes de $E(R)$ con distintos gra- dos de los aproximantes de la forma Padé $[N/N + 5]$ con $N = 1, 2, 3, 4, 5, 6$, respectivamente, y datos de la referencia [6] para diferentes distancias	19
3.4.	internucleares R . Se destaca en negritas al mínimo de la curva Resultados de la curva de energía potencial de HF de la referencia [6] (columna 2) para varias distancias internucleares R . En la columna 3 se muestra la evaluación del ajuste $E_{\{3,2\}}(R)$ (3.20) basado en el aproximante de Padé [5/10] y en la columna 4 la evaluación de la expresión analítica del potencial de Morse $E_{\rm M}(R)$ (2.11)	20 22
5.1.	HF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados obtenidos en la referencia [7] y obtenidos en el presente trabajo	30
6.1.	DF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados experimentales de la referencia [7] y obtenidos en el presente trabajo	34
7.1.	TF: Energías vibracionales $E_{(\nu,0)}$ del estado base $X^1\Sigma^+$. En la columna 4 se presenta el error absoluto entre los resultados experimentales reportados en la referencia [7] u obtanidas en el presente trabajo	20
7.2.	Comparación del número de estados vibracionales, rotacionales y rovibra- cionales, entre las moléculas de HF, DF y TF.	39 39
A.1.	HF: Energías rovibracionales $E_{(\nu,)}$ del estado base $X^1\Sigma^+$	44

B.1.	DF: Energías rovibracionales $E_{(\nu,L)}$ del estado base $X^1\Sigma^+$	46
C.1.	TF: Energías rovibracionales $E_{(\nu,L)}$ del estado base $X^1\Sigma^+$	48

Bibliografía

- [1] I. N. Levine, Química Cuántica. Pearson educación, 2001.
- [2] R. Rydberg, "Graphische darstellung einiger bandenspektroskopischer ergebnisse," Zeitschrift für Physik, vol. 73, no. 5, pp. 376–385, 1932.
- [3] O. Klein, "Zur berechnung von potentialkurven für zweiatomige moleküle mit hilfe von spektraltermen," Zeitschrift für Physik, vol. 76, no. 3-4, pp. 226–235, 1932.
- [4] A. L. G. Rees, "The calculation of potential-energy curves from band-spectroscopic data," Proceedings of the Physical Society, vol. 59, pp. 998–1008, nov 1947.
- [5] L. D. Landau and E. M. Lifshitz, <u>Quantum mechanics: non-relativistic theory</u>, vol. 3. Elsevier, 2013.
- [6] J. A. Coxon and P. G. Hajigeorgiou, "The B¹Σ⁺ and X¹Σ⁺ electronic states of hydrogen fluoride: A direct potential fit analysis," <u>The Journal of Physical Chemistry</u> <u>A</u>, vol. 110, no. 19, pp. 6261–6270, 2006.
- [7] J. A. Coxon and P. G. Hajigeorgiou, "Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 151, pp. 133–154, 2015.
- [8] R. J. Fallon, J. T. Vanderslice, and E. A. Mason, "Potential energy curves of hydrogen fluoride," The Journal of Chemical Physics, vol. 32, no. 3, pp. 698–700, 1960.
- [9] G. D. Lonardo and A. E. Douglas, "The electronic spectrum of HF. I. The $B^1\Sigma^+ X^1\Sigma^+$ band system," Canadian Journal of Physics, vol. 51, no. 4, pp. 434–445, 1973.
- [10] W. T. Zemke, W. C. Stwalley, J. A. Coxon, and P. G. Hajigeorgiou, "Improved potential energy curves and dissociation energies for HF, DF and TF," <u>Chemical</u> Physics Letters, vol. 177, no. 4, pp. 412–418, 1991.
- [11] X. Li and J. Paldus, "Energy- versus amplitude-corrected coupled-cluster approaches. iii. accurate computation of spectroscopic data exemplified on the hf molecule," <u>The</u> <u>Journal of Chemical Physics</u>, vol. 117, no. 5, pp. 1941–1955, 2002.

- [12] H. Olivares-Pilón and A. V. Turbiner, "H⁺₂, HeH and H₂: Approximating potential curves, calculating rovibrational states," <u>Annals of Physics</u>, vol. 393, pp. 335–357, 2018.
- [13] A. V. Turbiner and H. Olivares-Pilón, "Towards the analytic theory of potential energy curves for diatomic molecules. Studying He₂⁺ and LiH dimers as illustration," arXiv preprint arXiv:1904.06614, 2019.
- [14] D. Baye, "The Lagrange-mesh method," Physics Reports, vol. 565, pp. 1–107, 2015.
- [15] I. G. Kaplan, <u>Intermolecular interactions: physical picture, computational methods</u> and model potentials. John Wiley & Sons, 2006.
- [16] M. S. Child, <u>Semiclassical mechanics with molecular applications</u>. Oxford University Press, USA, 2014.
- [17] J. P. Araújo and M. Y. Ballester, "A comparative review of 50 analytical representation of potential energy interaction for diatomic systems: 100 years of history," International Journal of Quantum Chemistry, vol. 121, no. 24, p. e26808, 2021.
- [18] P. W. Atkins and R. S. Friedman, <u>Molecular quantum mechanics</u>. Oxford university press, 2011.
- [19] P. M. Morse, "Diatomic molecules according to the wave mechanics. II. Vibrational levels," Phys. Rev., vol. 34, pp. 57–64, Jul 1929.
- [20] J. L. Dunham, "The energy levels of a rotating vibrator," <u>Phys. Rev.</u>, vol. 41, pp. 721– 731, Sep 1932.
- [21] W. A. Bingel, "United atom treatment of the behavior of potential energy curves of diatomic molecules for small R," <u>The Journal of Chemical Physics</u>, vol. 30, no. 5, pp. 1250–1253, 1959.
- [22] R. A. Buckingham, "The repulsive interaction of atoms in S states," <u>Trans. Faraday</u> Soc., vol. 54, pp. 453–459, 1958.
- [23] C. Hättig, W. Klopper, A. Köhn, and D. P. Tew, "Explicitly correlated electrons in molecules," Chemical Reviews, vol. 112, no. 1, pp. 4–74, 2012.
- [24] F. London, "Zur theorie und systematik der molekularkräfte," <u>Zeitschrift für Physik</u>, vol. 63, no. 3-4, pp. 245–279, 1930.
- [25] W. Demtröder, Atoms, molecules and photons, vol. 3. Springer, 2010.
- [26] L. Pauling and J. Y. Beach, "The van der waals interaction of hydrogen atoms," Phys. Rev., vol. 47, pp. 686–692, May 1935.
- [27] B. Bransden and C. Joachain, Quantum Mechanics. Pearson Education, 2000.
- [28] H. Margenau and N. R. Kestner, <u>Theory of Intermolecular Forces: International</u> Series of Monographs in Natural Philosophy, vol. 18. Elsevier, 2013.
- [29] G. A. Baker, G. A. Baker Jr, P. Graves-Morris, G. Baker, and S. S. Baker, <u>Pade Approximants: Encyclopedia of Mathematics and It's Applications</u>, vol. 59. Cambridge University Press, 1996.
- [30] G. Audi, A. Wapstra, and C. Thibault, "The Ame2003 atomic mass evaluation: (II). Tables, graphs and references," <u>Nuclear Physics A</u>, vol. 729, no. 1, pp. 337–676, 2003.

- [31] C. Brezinski, "Generalizations of the christoffel-darboux identity for adjacent families of orthogonal polynomials," <u>Applied Numerical Mathematics</u>, vol. 8, no. 3, pp. 193– 199, 1991.
- [32] M. Bollhöfer and Y. Notay, "JADAMILU: a software code for computing selected eigenvalues of large sparse symmetric matrices," <u>Computer Physics Communications</u>, vol. 177, no. 12, pp. 951–964, 2007.
- [33] PubChem, "Pubchem element summary for atomic number 9, fluorine." https://pubchem.ncbi.nlm.nih.gov/element/Fluorine. Accessed:11.03.2022.
- [34] W. Purwanto, S. Zhang, and H. Krakauer, "An auxiliary-field quantum monte carlo study of the chromium dimer," <u>The Journal of chemical physics</u>, vol. 142, no. 6, p. 064302, 2015.

ACTA DE EXAMEN DE GRADO

UNIVERSIDAD AUTÓNOMA METROPOLITANA

No. 00112 Matrícula: 2193803871

