

UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD IZTAPALAPA

DIVISION DE CIENCIAS BIOLOGICAS Y DE LA SALUD

EVALUACIÓN Y ESTANDARIZACIÓN DE DIFERENTES BIOENSAYOS PARA DETECTAR CITOTOXICIDAD EN PRODUCTOS NATURALES MARINOS.

T E S I S

QUE PARA OBTENER EL GRADO DE

MAESTRA EN BIOLOGÍA EXPERIMENTAL

P R E S E N T A

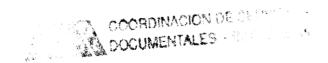
PILAR ALEJANDRA PÉREZ PÉREZ

MÉXICO, D.F

JULIO 2001

UNIVERSIDAD AUTONOMA METROPOLITANA

UNIDAD IZTAPALAPA


DIVISION DE CIENCIAS BIOLOGICAS Y DE LA SALUD

EVALUACION Y ESTANDARIZACION DE DIFERENTES BIOENSAYOS PARA DETECTAR CITOTOXICIDAD EN PRODUCTOS NATURALES MARINOS.

TESIS

QUE PARA OBTENER EL GRADO DE:
MAESTRA EN BIOLOGIA EXPERIMENTAI.

PRESENTA:
PILAR ALEJANDRA PEREZ PEREZ

MEXICO, D. F.

JULIO 2001.

UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD IZTAPALA

DIVISIÓN DE CIENCIAS BIOLÓGICAS Y DE LA SALUD

Comité asesor de Tesis:

Dr. Juan José Luis Carballo Cenizo Dra. María Dolores García Grávalos Dra. María Esther de la Rosa Duque Dra. Leticia Bucio Ortiz

M en C. Cruz Lozano

Jurado de examen

Presidente

Dra. Leticia Bucio Ortiz

Secretario

M en C. Cruz Lozano

Vocal

Dr. Juan José Luis Carballo Cénizo

Vocal

Dra. María Esther de la Rosa Duque

La Maestría en Biología Experimental de la Universidad Autónoma Metropolitana se encuentra dentro del Patrón de Programas de Postgrado de Excelencia del Consejo Nacional de Ciencia y Tecnología, según el No. de registro 309-0

Agradezco al CONACYT el apoyo brindado durante el desarrollo del presente trabajo a través de la beca con número de registro 142309.

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México a través del Instituto de Ciencias del Mar y Limnología, UNAM, Unidad Académica Mazatlán, y a todo el personal que ahí labora por las facilidades proporcionadas durante mi estancia.

Quiero agradecer, especialmente a José Luis Carballo mi director de tesis, jefe y amigo por haberme guiado en la realización de este trabajo, por compartir sus conocimientos y especialmente por su confianza, espero no haberte defraudado.

A mi codirectora la doctora Ma. Dolores García por su ayuda al realizar las pruebas antineoplásicas, por su amabilidad ,disposición y por las sugerencias para el manuscrito.

A mi jurado las doctoras Ma. Dolores García, Leticia Bucio, Ma. Esther de la Rosa, al maestro Cruz Lozano que han tenido que ver en la buena definición y la imagen de este manuscrito.

Al Dr. Antonio Laborda por su valiosa revisión a este manuscrito y sus acertadas sugerencias, por su cariño y amistad.

A la Sra. Maria Clara Ramírez, responsable de la biblioteca "Dra. Maria Elena Caso" por su excelente disposición y eficiencia para conseguir material bibliográfico.

A Germán Ramírez y a Carlos Suárez del centro de computo por su valiosa ayuda en este trabajo y por su disposición para las cosas referentes a computo.

A los miembros del laboratorio de ecología del bentos por haberme ayudado en diferentes aspectos en esta tesis por orden alfabético: Enrique Avila, Antonio Cruz, Zaira Hernández, Verónica Maldonado, Héctor Nava, Cristina Vega, Miroslava Wilson y Benjamín Yánez, especialmente con los que comparti ratos maravillosos dentro y fuera del laboratorio siempre los recordare.

A todos aquellos que de alguna manera hicieron que mi estancia en Mazatlán fuera grata, brindándome su amistad y apoyo, la lista es grande y no terminaría.

A todos mis compañeros y amigos de la maestría por los momentos que pasamos juntos durante esta etapa, especialmente a mi ángel Javier López por su valiosísima ayuda.

Y por último y no por ello menos importante quiero agradecerles a mis padres por haberme dado la vida.

A todos ellos GRACIAS. Pilar Alejandra Pérez Pérez.

INDICE

INDICE	1
RESUMEN	
I. INTRODUCCIÓN	3
II.ANTECEDENTES	7
III. HIPÓTESIS	
IV. OBJETIVOS	
Objetivo general	
Objetivos específicos	10
V. DESARROLLO EXPERIMENTAL	
5.1) Obtención de las muestras.	11
5.2) Separación de extractos.	11
5.3) Estandarización de los bioensayos	14
5.3) Estandarización de los bioensayos	15
5.3.1. Estandarización de los bioensayos basados en el desarrollo embrionario del	
erizo Echinometra vanbrunti	
5.3.1.1. Época de reproducción	15
5.3.1.2. Eficiencia de fertilización en condiciones controladas	
5.3.1.3. Temperatura óptima	16
5.3.1.4. Tiempo de desarrollo	16
5.3.1.5. Calidad de la puesta	16
5.3.2. Estandarización de bioensayos con Artemia sp	
5.3.2.1. Descapsulación química de los quistes	
5.3.2.2. Cálculo de porcentaje de eclosión y desarrollo hasta nauplio 3 en función	l
del tiempo	17
5.4) BIOENSAYO 1: Viabilidad de ovocitos en Echinometra vanbrunti	18
5.5) BIOENSAYO 2: Inhibición de la división celular durante el desarrollo embrionar	
en Echinometra vanbrunti.	
5.6) BIOENSAYO 3: Capacidad de eclosión de embriones de Artemia sp	
5.7) BIOENSAYO 4: Supervivencia de nauplios 1 de Artemia sp. (Meyer et al., 1982)).21
5.8) Pruebas antineoplásicas realizadas sobre tres líneas celulares específicas " in vitro)".
VI. TRATAMIENTO DE LA INFORMACIÓN	24
VII. RESULTADOS	25
7.1) Estandarización de las condiciones de experimentación con Echinometra vanbrun	ıti.
	25
7.2) Estandarización de las condiciones de experimentación con Artemia sp	28
7.3) Evaluación de la toxicidad con el bioensayo: Inhibición de la división celular	
durante el desarrollo embrionario (Kobayashi, 1969)	
7.4) Evaluación de la toxicidad con el bioensayo: Viabilidad de ovocitos en Echinome	
vanbrunti	37
7.5) Evaluación de la toxicidad con el bioensayo capacidad de eclosión de embriones o	
Artemia sp	44
7.6) Evaluación de la toxicidad con el bioensayo Supervivencia de nauplios 1 de Arten	
sp.	60

7.7) Resultados de las pruebas antineoplásicas realizadas sobre tres líneas celular	es
específicas.	73
específicasVIII. DISCUSIÓN	74
8.1) Evaluación de la toxicidad utilizando erizo de mar Echinometra vanbrunti	
8.2) Evaluación de la toxicidad utilizando Artemia sp	
IX. CONCLUSIONES	
X. REFERENCIAS	85
XI. ANEXO: Clasificación taxonómica de las especies estudiadas	94
ESPONJAS	
GORGONIAS	95

RESUMEN

Este trabajo se desarrolló en dos etapas. La primera parte consistió en la puesta a punto y estandarización de los 4 bioensayos que nos permitirían valorar la toxicidad de extractos de organismos marinos. La segunda parte consistió en la aplicación de estos bioensayos para valorar la toxicidad de extractos orgánicos de invertebrados (fundamentalmente esponjas y antozoos gorgonáceos).

Los dos primeros bioensayos utilizan como organismo prueba al erizo marino Echinometra vanbrunti, especie abundante en el Pacifico Mexicano. El primero para evaluar la viabilidad de ovocitos para ser fertilizados después de haberse expuesto a las diferentes satancias durante un tiempo fijo (1 hora). La toxicidad se evaluó como el porcente e de huevos fertilizados con respecto a un control. El segundo bioensayo evalúe la capacidad de división que presentan los huevos fertilizados "in vitro" y so metidos posteriormente a las sustancias toxicas. La toxicidad se contabilizó conta tiempo determinado. Para la estandarización de estos respecto a un control en bioensayos se recolecta erizos mensualmente, los cuales eran inducidos al desove para determinar período de maduración natural de la especie en la zona. Simultáneamente rante la época de reproducción, se realizaron múltiples experimentos para dete inar la proporción espermatozoides/huevo, densidad de huevos/ml, temperatus optima, etc., que nos aseguraran un porcentaje de fertilización cercano o encima del 90 %.

En el tercer ensa

Artemia sp. en pres

mortalidad con resp

capacidad de eclosió

y cultivados posterio

Una vez estanda toxicidad de extrace especies, 5 esponja

e cultivaron poblaciones homogéneas (nauplio 1) de a de las sustancias, para evaluar la toxicidad como a un control. En el cuarto bioensayo se evaluó la embriones de *Artemia* sp. descapsulados químicamente, nte en el medio con la sustancia a probar.

ados los bioensayos, se trabajó en la evaluación de la de diferentes esponjas y gorgonáceos. Se evaluaron 10 Hyatella intestinalis, Mycale parishii, Dysidea sp., Aplysina

sp., Chondrosia chucalla, y 5 antozoos gorgonáceos: Lophogorgia rigida, Lophogorgia peruana, Lophogorgia sp, Pacifigorgia adamsii, Muricea spl. De cada especie se obtuvieron dos extractos; uno apolar (acetato de etilo) y otro más polar (isopropanol) y se calcularon las IC₅₀ y LC₅₀ utilizando el análisis Probit (Finney, 1971).

En los bioensayos con erizo de mar la toxicidad se vio influenciada por los factores extracto (especie) y concentración; en el ensayo de inhibición de la división celular detectó toxicidad en las 10 especies ensayadas, generalmente a partir de 5 μg/ml. Para el bioensayo de viabilidad ovocítica las 10 especies fueron tóxicas, dependiendo del extracto y concentración ensayada se detectó toxicidad a partir de cierta concentración.

En los bioensayos con *Artemia* sp. la toxicidad varió de acuerdo a los factores: especie, tiempo de exposición, concentración y en el caso del bioensayo de eclosión de quistes el factor extracto (especie); en el ensayo de capacidad de eclosión se detectó toxicidad en las 10 especies ensayadas. Para el bioensayo de nauplios 1 se detectaron 6 especies tóxicas.

Ninguna de las 10 especies ensayadas fue tóxica en los 4 bioensayos y los resultados indicaron que es importante realizar más de un fraccionamiento para obtener compuestos con diferente polaridad y poder evaluar su toxicidad, ya que la toxicidad estuvo asociada, en algunos casos, al extracto polar y en otras al menos polar.

Es importante destacar, que debido a los antecedentes bibliográficos y a los resultados obtenidos de los cuatro bioensayos evaluados en este estudio, el bioensayo de inhibición de la división celular durante el desarrollo embrionario en *Echinometra vanbrunti* podría ser utilizado como prueba preliminar para detectar y evaluar la toxicidad en extractos procedentes de organismos marinos que pudieran tener potencial farmacológico o de acción citotóxica, pero también podría ser usado como ensayo en ecotoxicología ambiental.

I. INTRODUCCIÓN

I. INTRODUCCIÓN

Desde hace tiempo se sabe que los invertebrados marinos como las esponjas, los cnidarios, etc., presentan un mayor número de productos naturales biológicamente activos en comparación con organismos procedentes del medio terrestre (Ireland et al., 1993), algunos de los cuales presentan propiedades farmacológicas con clara aplicación en medicina (antitumorales, antibacterianas, etc.) (Rinehart et al., 1981; García-Grávalos et al., 1994; Higa et al., 1995). El frecuente descubrimiento de compuestos bioactivos en estos animales, se ha interpretado como un sistema de defensa química, que algunas especies han desarrollado a lo largo de su evolución frente a factores externos causantes de estrés, como la predación, el exceso de recubrimiento por organismos adherentes o la fuerte competencia por el espacio (Proksch, 1994). En el caso concreto de la actividad antimicrobiana en esponjas, se postuló que podría tener relación con la capacidad de incrementar la retención de bacterias por los coanocitos, aumentando por consiguiente la eficiencia del proceso alimenticio (Bergquist y Bedford, 1978).

En estos dos grupos de invertebrados, y más concretamente en las esponjas, se han descrito más de 1500 productos naturales diferentes: terpenos, esteroles, derivados de aminoácidos, alcaloides policíclicos, etc. (Caprioli *et al.*, 1992; Faulkner, 1993) y se han encontrado compuestos antibióticos espermicidas y sustancias activas contra cáncer de pulmón, colon, linfomas, melanomas, SIDA e incluso malaria (Carballo, 2001).

La farmacología basada en productos naturales de origen marino tuvo un gran auge en la década de los 60's, que se ha mantenido hasta nuestros días desencadenando mayores esfuerzos de instituciones académicas, compañías farmacéuticas y organizaciones de salud para la búsqueda de nuevos medicamentos de origen marino (Amadame et al., 1982; McClintock., 1987; Munro et al., 1987; Munro et al., 1989; Huysecom et al., 1990; Blunt et al., 1990; Rinehart et al., 1993; Zubía et al., 1997; Rueda et al., 1997). En México, esta línea de

investigación se desarrolló fundamentalmente en la década de los 70's y 80's (Green y Bakus., 1975; Green, 1977; Green et al., 1985; Bakus et al., 1985; Encarnación et al, 1989; Green et al., 1990). Posteriormente, durante las dos últimas décadas esta actividad decayó y muy recientemente se ha vuelto a detectar un importante auge relacionado con este tipo de estudios (Cárdenas et al., 1999; Montiel et al., 1999; Fernández y Soria, 1999; Soria et al., 1999; Kelly et al., 1999).

Las estadísticas indican, que sólo el 3% de los extractos ensayados presentan actividad potencial en pruebas preliminares, y que sólo 1 de cada 10,000 muestras obtenidas de organismos terrestres proporciona una nueva actividad farmacológica interesante que llega a su desarrollo final, cuando se trata de organismos marinos esta proporción pasa a ser de 150 muestras con actividad potencial novedosa por cada 10,000 examinadas.

Por tanto, la detección y cuantificación de la toxicidad son cruciales para la valoración de productos naturales.

Sin embargo, en la búsqueda de nuevos principios con actividades farmacológicas especificas, por ejemplo antitumorales, se emplean a menudo ensayos y pruebas cuyos requerimientos de infraestructura (García-Grávalos, 1994) y costos, son superiores a los que disponen la mayoría de los grupos de investigación relacionados con esta temática (Carballo, 2001; Suffness y Douros, 1979). Como respuesta a la necesidad de realizar ensayos con los que se pueda detectar un espectro amplio de actividades a más bajo costo, y que pudieran utilizar otros grupos de investigación tanto en el ámbito nacional como internacional con costos y requerimientos de infraestructura bajos se planteó el presente trabajo, que ha consistido básicamente en la evaluación y comparación de cuatro métodos para valorar la citotoxicidad de extractos de esponjas y antozoos gorgonáceos (corales blandos), como una forma de detección preliminar de actividad antineoplásica.

El primer bioensayo utilizado (modificado de Woodworth et al., 1999), evalúa la viabilidad de los ovocitos de erizos marinos para ser fecundados después de

haberse expuesto a la presencia de sustancias tóxicas. El segundo, utiliza como indicador de citotoxicidad la capacidad de los extractos para inhibir la división celular de huevos fertilizados de erizos marinos (Kobayashi, 1969). Estos dos métodos se han empleado con anterioridad fundamentalmente para la detección de toxicidad de vertidos urbanos (Kobayashi, 1969; Dinnel et al., 1987; Woodworth et al., 1999) y para evaluar la citotoxicidad sobre material biológico en crecimiento continuo (Martín y Uriz, 1993). El último, además tiene como ventaja, que sus resultados se pueden relacionar con el significado ecológico que la sustancia probada cumple en el medio y que permite detectar la toxicidad en función del tiempo (Uriz et al., 1991; Becerro et al., 1995). De esta forma, desde el punto de vista ecológico, tienen utilidad para explicar fenómenos de competencia por el espacio, como mecanismo anti-adherentes, o en aquellos procesos en los cuales la inhibición del crecimiento del competidor es un factor determinante (Becerro et al., 1997).

Los siguientes bioensayos utilizan al organismo *Artemia* sp. En el tercero, se someten poblaciones lo más homogéneas que sea posible de nauplio 1 a la presencia de los extractos, evaluando posteriormente la toxicidad como la mortalidad producida con respecto a una población control. Este método, no permite inferencias sobre el verdadero papel de la sustancia en el medio, pero es considerado como un método fácil de detección preliminar de actividad antineoplásica en extractos de plantas, ya que sus resultados parecen correlacionarse con los obtenidos en ensayos "in vitro" sobre líneas humanas específicas (Meyer et al., 1982), sin que signifique que todos los compuestos tóxicos sean antineoplásicos.

El cuarto está basado en el de Migliore *et al.* (1997), y con él se evalúa la capacidad de eclosión de embriones de *Artemia* sp. descapsulados químicamente y cultivados posteriormente en un medio con la sustancia tóxica a evaluar.

Posteriormente, con el fin de validar los resultados obtenidos por los cuatro métodos, se compararon con los observados en ensayos antineoplásicos sobre tres líneas celulares específicas: linfoma de ratón P388, carcinoma de pulmón

humano A549 y carcinoma de colón humano. De esta forma, se contribuye al desarrollo de una metodología de valoración preliminar, rápida y eficaz, para detectar actividad antineoplásica en extractos procedentes de organismos marinos.

Además de la importancia que tiene este tipo de investigación en el hallazgo de nuevos fármacos, también hay que añadirle el indudable interés que supone en la búsqueda de nuevos recursos marinos susceptibles de ser explotados racionalmente como recursos pesqueros, con los beneficios sociales y económicos que esto conlleva. En este sentido Duckworth et al., (1997) han realizado las primeras experiencias para el cultivo de esponjas con el fin de obtener un suministro estable del compuesto activo, al menos durante la fase clínica; y de igual manera, en el Mediterráneo (Carballo et al., 1997; Carballo, 2000; Carballo et al. 2000) y Caribe (Carballo et al., 1999, Carballo 2000b), han comenzado a explotar como recurso pesquero un tunicado que produce una sustancia en estudio y que actualmente esta en fase clínica II, que presenta actividad contra diversos tipos de tumores sólidos (Rinehart et al., 1990; Wright et al., 1990), cuya comercialización está prevista a partir del año 2002.

II. ANTECEDENTES

II.ANTECEDENTES

Los principios activos naturales son compuestos orgánicos (metabolitos secundarios) producidos por microorganismos, plantas y macroorganismos, que pueden presentar un amplio rango de aplicaciones en la agricultura (herbicidas, fungicidas, insecticidas, etc.) (Caprioli *et al.*, 1992), la industria naval (pinturas antiadherentes) (Bakus *et al.*, 1985), o en la farmacología (como fuente de antitumorales, antivirales, etc.) (Rinehart *et al.*, 1981; García-Grávalos, 1994; Higa *et al.*, 1995; Zubía *et al.*, 1997; Rinehart, 2000).

Desde hace tiempo se sabe que los invertebrados marinos presentan un número mayor de productos naturales, biológicamente activos, en comparación con los organismos del medio terrestre (Ireland et al., 1993). Así, estudios realizados con esponjas en el océano Atlántico, Pacífico, Índico y Antártico, han demostrado ictiotoxicidad (Green, 1977; McClintock, 1987; Green et al., 1990; Huysecom et al., 1990), citotoxicidad (Blunt et al., 1990), actividad antimicrobiana y propiedades antitumorales (Amadame et al., 1982; Munro et al., 1989; Green et al., 1990). Concretamente, algunas especies han demostrado ser fuente potencial de productos biomédicos, como, por ejemplo, Axinella weltneri (Índico) y Stylotella agminata (Pacífico), empleadas contra cáncer de pulmón, o Lissodendoryx sp. (Nueva Zelanda) y Jaspis digonoxea (Mar Rojo), usadas no sólo contra cáncer de pulmón sino también frente al cáncer de colón y linfomas. Otras, como Amphimedon terpenensis (Australia) y Clathria pyramida (Australia), presentan propiedades antibióticas y también espermicidas, en el caso de la última mencionada; mientras que, Dysidea avara (Mediterráneo) se ha mostrado efectiva contra el síndrome de inmuno deficiencia adquirida (SIDA), y en Cymbastela hooperi y C.coralliophila (Australia) se han detectado propiedades antimaláricas.

De igual manera, los corales blandos producen una gran diversidad de metabolitos secundarios, como terpenos (Rinehart *et al.*, 1981; Pawlik *et al.*, 1987; Van Alstyne *et al.*, 1994; Higuchi *et al.*, 1998), alguno de los cuales han presentando actividad antineoplásica. También se han aislado de ellos,

diterpenos, sesquiterpenoides, esteroides, isoprenoides y terpenoides, con diversas actividades: ictiotoxicidad, citotoxicidad (Fenical et al., 1981; Higuchi et al., 1998; Garrido et al., 2000), actividad microbiana y actividad antiinflamatoria (Faulkner, 1993,1999). Entre los resultados obtenidos sobre estos organismos se puede destacar que, en corales blandos de Japón, se han reportado dos diterpenoides que resultaron tóxicos utilizando el modelo de bioensayo de Artemia sp. (Yamada et al., 1997); y que la especie Leptogorgia sarmentosa se ha mostrado efectiva contra el cáncer de colón y el melanoma humano.

Otros organismos, como los briozoarios *Bugula neritina* (Mediterráneo, Pacífico) y *Myriapora truncata* (Mediterráneo), presentan un compuesto activo contra diversos tumores sólidos (actualmente en fase clínica 1), en el caso de la primera especie; mientras que en la segunda lo es frente a la leucemia. También de moluscos, como *Elysia rubefescens* (Pacífico), se han aislado productos activos contra el cáncer de colón y de próstata; y algunas ascidias, como *Aplidium albicans* (Mediterráneo), presentan actividad frente al cáncer de próstata, o *Ecteinascidia turbinata* (Caribe, Mediterráneo), en la que se ha detectado una alta efectividad frente al cáncer de pulmón, mama y melanoma, (Carballo, 2001; Rinehart, 2000; Garrido *et al.*, 2000).

En relación con la actividad que se desarrollo en este trabajo, se conocen algunos antecedentes de estudios que se han llevado a cabo sobre organismos de las costas mexicanas. Así, se han detectado compuestos con actividad antimicrobiana, ictiotóxica, anti-adherente, etc., en esponjas marinas (Green, 1977; Green et al., 1985; Bakus et al., 1985; Betancourt-Lozano et al., 1998), esponjas y holoturias (Green y Bakus, 1975), esponjas y tunicados (Cárdenas et al., 1999; Montiel et al., 1999), etc.; y también se han iniciado, recientemente, estudios sobre ecología química en diversos organismos bentónicos (Fernández y Soria, 1999; Soria et al., 1999; Kelly et al., 1999).

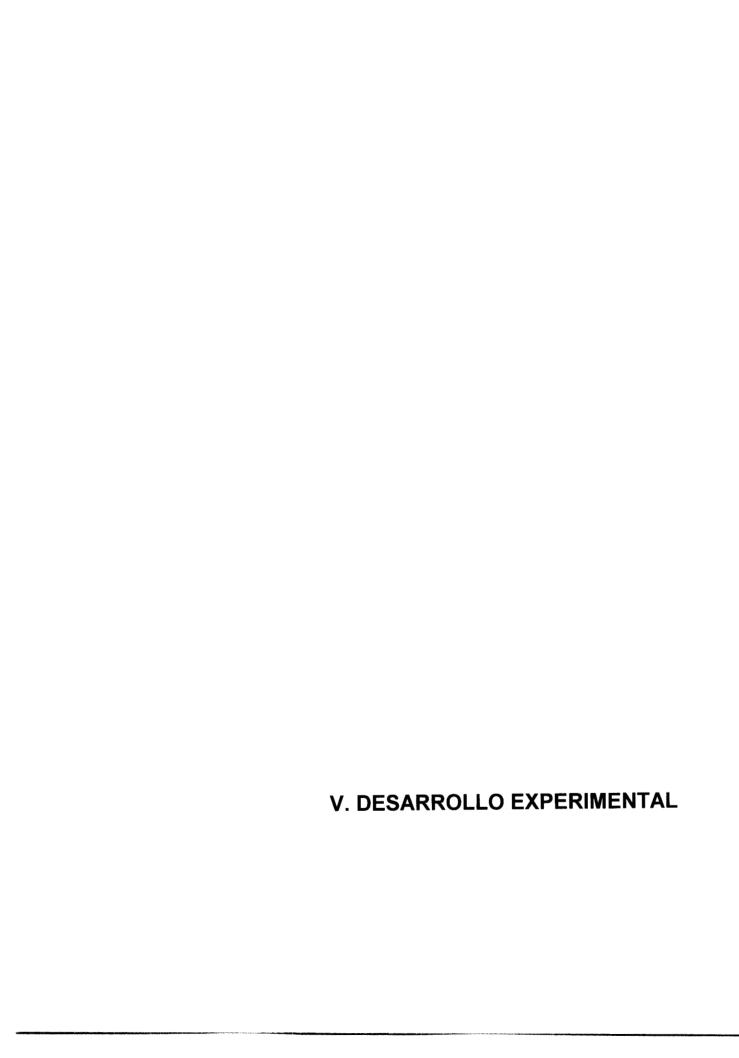
III. HIPÓTESIS

III. HIPÓTESIS

Las esponjas y antozoarios gorgonáceos han desarrollado, a lo largo de su evolución, la capacidad de sintetizar compuestos químicos relacionados con la adquisición y defensa del espacio vital, la defensa frente a factores como la depredación, el exceso de recubrimiento por organismos adherentes, etc. Algunos de estos compuestos pueden presentar propiedades farmacológicas que se pueden evaluar mediante bioensayos específicos.

IV. OBJETIVOS

IV. OBJETIVOS


Objetivo general

Desarrollo, puesta a punto y evaluación de diferentes bioensayos, para detectar toxicidad de extractos procedentes de esponjas y antozoos gorgonáceos marinos.

Objetivos específicos

- 1.- Estandarizar 4 bioensayos diferentes para detectar toxicidad en organismos marinos.
- 2. Comparar los diferentes bioensayos para evaluar la toxicidad de extractos orgánicos de invertebrados marinos.
- 3. Evaluar la toxicidad de diferentes concentraciones de extractos procedentes de organismos marinos.
- 4. Buscar alguna relación entre la concentración a la cual se empieza a detectar toxicidad de los 4 bioensayos, con los procedentes de ensayos antineoplásicos específicos realizados sobre los mismos extractos por el grupo de la Dra. Ma. Dolores García (Pharma- Mar España).

10

V. DESARROLLO EXPERIMENTAL

5.1) Obtención de las muestras.

Las muestras fueron recolectadas directamente en la zona intermareal y también mediante inmersión con buceo autónomo hasta una profundidad máxima de 30 m. Los ejemplares se colocaron en bolsas de plástico debidamente etiquetadas y se transportaron en hielo al laboratorio, donde se almacenaron en un congelador a –25°C/-30°C hasta la obtención de los extractos. Una muestra de cada especie se conservó en alcohol al 70% para establecer una colección de referencia taxonómica.

5.2) Separación de extractos.

Para la separación de extractos se utilizó material fresco y liofilizado. Todos los ejemplares se cortaron en trozos pequeños y se limpiaron cuidadosamente de epibiontes, conchas, etc. Las muestras a liofilizar, se introdujeron en frascos de vidrio que se congelaron por espacio de 24 horas y posteriormente se deshidrataron durante 96 horas en una liofilizadora (LabConco).

Para la extracción, utilizando material fresco, se siguió el proceso (Esquema 1): las muestras se colocaron en un tubo de centrífuga Falcón de 50 ml de capacidad y se les añadió una parte del disolvente isopropanol (2-PrOH) en una proporción 1/10 peso/volumen (w/v). Posteriormente se homogeneizó la muestra con un homogeneizador ultra turrax (Labortechnik), durante unos mínutos, vigilando que no aumentara la temperatura durante el macerado; para esto se introdujo el tubo de centrífuga en un recipiente con hielo. A continuación, se centrifugó a 2500-3000 r.p.m. durante 5-10 minutos. La extracción se realizó en dos pasos sucesivos utilizando primero el 50% del volumen total de disolvente usado y después el otro 50%.

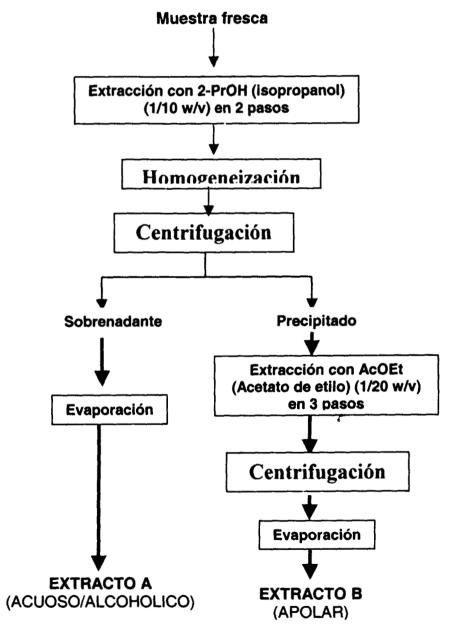
A partir de aquí el proceso sigue dos vías diferentes. En un primer paso, el sobrenadante se extrajo con una pipeta pasteur, teniendo cuidado de que no se

volviera a enturbiar, y se pasó a un matraz de fondo redondo para evaporar el disolvente en un rotavapor a 25 °C. Con este proceso obtenemos el extracto A (el más polar), ligeramente hidrosoluble (acuoso / alcohólico).

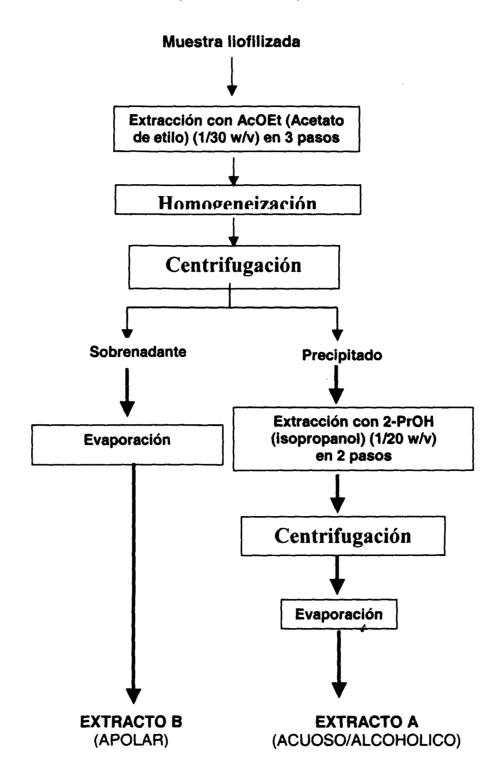
Por otra parte se recogió el precipitado y se realizó una segunda extracción con acetato de etilo (AcOEt) en una proporción de 1/20 (w/v), que se llevó a cabo en tres pasos sucesivos: primero se utilizó el 50% del volumen total de disolvente, posteriormente el 30% y por último el 20%. Al igual que en el caso anterior el material se centrifugó y se recogió el sobrenadante, que se trasvasó al rotavapor para obtener el extracto B (fracción más apolar).

Los extractos (A, B) del matraz del rotavapor se disolvieron añadiendo un volumen conocido de 3 a 5 ml de Acet/MeOh 1:1. Posteriormente se recogieron y se depositaron en un vial de vidrio, pesado previamente, donde el disolvente se evaporó con un poco de nitrógeno. Por último, el vial se pesó para conocer la cantidad exacta de extracto crudo. Una vez pesados ambos extractos, se disolvieron en un volumen adecuado de acetona-metanol 1:1, para obtener la concentración inicial (mg/ml) y así hacer las diferentes concentraciones que se probaron en los bioensayos: 1000, 100, 50, 10 y 5 µg/ml, respectivamente.

El disolvente se evaporó totalmente antes de realizar los bioensayos, ya que la presencia de disolventes orgánicos podría provocar, por sí sola toxicidad. Además, se ha demostrado que pequeñas cantidades de estos disolventes, favorecen en ocasiones, la división celular y la metamorfosis en invertebrados (Pennington y Hadfield, 1989). Así mismo, se conoce que 1h a 4 ºC es suficiente para evaporar una cantidad de 0.05 ml de acetona y 48 horas para evaporar 1 ml (Martín y Uriz, 1993).


Por consiguiente, al menos 2 ó 3 h antes de comenzar el ensayo, los extractos (en sus diferentes concentraciones) se colocaron en los distintos pocillos de la placa multipozos, hasta la completa evaporación del disolvente.

Se realizaron cuatro réplicas para cada concentración, más otras cuatro para el control, de tal manera, que se hizo un total de 24 pruebas por cada uno de los extractos (2), en cada uno de los métodos (4). De esta forma, por cada ejemplar


se llevaron a cabo un total de 192 bioensayos (24 x 2 x 4). Todo el procedimiento de extracción se llevó a cabo bajo luz tenue, a una temperatura inferior a 25°C, y los extractos se almacenaron en un congelador a -20/-25 °C hasta su utilización.

Para la extracción utilizando material liofilizado el procedimiento fue similar al descrito anteriormente, con la modificación de que el primer disolvente usado fue acetato de etilo, en lugar de isopropanol (Esquema 2).

Esquema 1. Protocolo de extracción para los bioensayos

Esquema 2.-Protocolo de extracción para los bioensayos

5.3) Estandarización de los bioensayos.

5.3.1. Estandarización de los bioensayos basados en el desarrollo embrionario del erizo Echinometra vanbrunti.

5.3.1.1. Época de reproducción

Para detectar la época de maduración, se recolectaron mensualmente de 10-15 erizos, seleccionando aquellos que se desprendieran más fácilmente del sustrato para no dañarlos en el proceso. Se transportaron cuidadosamente al laboratorio, se pesaron y midieron (alto y ancho) posteriormente, se les indujo al desove inyectándoles una solución isotónica de cloruro de potasio (KCI), 0.5 M, en la membrana aboral (periprocto) (Kobayashi 1971). Si los erizos se encontraban maduros emiten los productos sexuales. Una vez cosechados los ovocitos, se lavaron varias veces en agua de mar aireada previamente y se recogieron utilizando una malla de 20μm, para eliminar el exceso de agua y se mantuvieron en agua de mar filtrada (0.45 μm) y esterilizada, mediante rayos UV, a temperatura ambiente (26 °C). Los espermatozoides se recolectaron directamente en el gonoporo mediante una pipeta, y se almacenaron en tubos cónicos (Eppendorf), que se mantuvieron refrigerados (4° C) hasta su utilización.

5.3.1.2. Eficiencia de fertilización en condiciones controladas

La proporción de espermatozoides y de huevos es muy importante para el éxito de la fertilización, por lo que este aspecto se evaluó previamente a la realización de los bioensayos. Para ello, se utilizaron diferentes proporciones de espermatozoides / huevos (500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 6000, 6500) y se contabilizó el número de huevos fecundados a los 30' de iniciar el proceso. Los huevos fecundados, se reconocen fácilmente por la presencia de la membrana de fertilización que empieza a desarrollarse aproximadamente a los 3 minutos de iniciado el proceso. Posteriormente, se

seleccionó la proporción espermatozoides / huevos, a la cual se obtuvo al menos el 90% de fertilización en ese tiempo (30').

5.3.1.3. Temperatura óptima

Para estandarizar el proceso en las distintas pruebas, fue necesario que tanto la inducción al desove, como la fertilización *in vitro* se hicieran siempre a la misma temperatura. Por este motivo, se trabajó en 6 ensayos con el fin de valorar el efecto de la temperatura sobre el proceso de fertilización. Para ello, se diseñó una experimento en concordancia con la anterior, en la que se probaron, simultáneamente, varias proporciones de espermatozoides / huevo a diferentes temperaturas (23, 26 y 29 °C).

5.3.1.4. Tiempo de desarrollo

Como paso previo a la realización de los bioensayos, también fue necesario obtener el tiempo promedio en que se alcanzan los primeros estados de desarrollo. Para ello, una vez obtenidas las condiciones óptimas de inducción, fertilización, etc., se estudió el desarrollo de los huevos fecundados, anotando el tiempo que tardan en alcanzar los estadíos de dos células, cuatro células, mórula, blástula y gástrula.

5.3.1.5. Calidad de la puesta

La calidad de la puesta también es importante para el éxitó de los bioensayos, por este motivo, una vez obtenidos los espermatozoides y ovocitos, se utilizó una pequeña muestra para obtener diferentes parámetros. A partir del número de los ovocitos se calculó él numero de huevos por hembra, se midió su diámetro y se observó su forma, ya que para asegurar un valor superior al 90% de fertilización los gametos deben tener cierto grado de madurez (forma homogénea, tamaño adecuado). Con los espermatozoides se calculó su número por mililitro y se evalúo su movilidad en el tiempo y su capacidad para fertilizar a los ovocitos. Esta prueba

se realizó siempre antes de cada bioensayo.

5.3.2. Estandarización de bioensayos con Artemia sp.

5.3.2.1. Descapsulación química de los quistes

Para la obtención de los nauplios se pesaron 0.5 gramos de quistes de *Artemia* sp. y se colocaron en 100 ml de agua destilada bajo aireación forzada (30-60 minutos). Los quistes así hidratados se cosecharon con una malla de $120~\mu m$ para eliminar el exceso de agua .

Los quistes se descapsularon químicamente antes de los siguientes 30 minutos, añadiendo la concentración adecuada de una sustancia descapsuladora formada por NaOCL, NaOH y agua de mar según el siguiente protocolo:

NaOCI (Hipoclorito de sodio) 0.5 gramos, NaOH (Hidróxido de sodio) 0.33 ml de una solución al 40% y 14 ml de agua de mar por cada gramo de quiste seco. Después de añadir esta solución se esperaron 15 minutos verificando constantemente la temperatura del medio de descapsulación, que se mantuvo siempre por debajo de los 40 °C por ser una reacción exotérmica. El proceso se termina cuando se aprecia un cambio de color, de marrón a gris naranja (color del embrión) en los quistes. En ese momento, se recolectan rápidamente los embriones con una malla de 120 μm y se enjuagan abundantemente con agua de mar filtrada, para eliminar el exceso de solución descapsuladora.

5.3.2.2. Cálculo de porcentaje de eclosión y desarrollo hasta nauplio 3 en función del tiempo.

El proceso de eclosión de los quistes se realizó tres veces bajo condiciones estándar (iluminación permanente, temperatura constante: 30 °C), para calcular el tiempo medio en el cual comienza la eclosión de los quistes y el tiempo de desarrollo de nauplio 1. Mediante observación microscópica se determinó el porcentaje de eclosión y desarrollo de los diferentes estadíos: embrión, nauplio 1,

5.4) BIOENSAYO 1: Viabilidad de ovocitos en *Echinometra* vanbrunti.

Este bioensayo se desarrolló para valorar la capacidad de fertilización de ovocitos de erizos marinos después de haber sido expuestos a diferentes concentraciones de extractos. Se trata de una modificación del método de Woodworth et al (1999), de forma que, en nuestro caso, en lugar de exponer los espermatozoides al tóxico, se exponen los ovocitos y se observa su viabilidad (capacidad para ser fertilizados), después de haber sido expuestos durante un tiempo determinado.

Los ejemplares de *Echinometra vanbrunti* (erizo de mar) fueron recolectados, en el punto máximo de maduración, en las zonas intermareales de la Bahía de Mazatlán y se mantuvieron en acuarios con aireación forzada y agua de mar filtrada (0.45 µm) y esterilizada mediante rayos UV. Los ovocitos y espermatozoides, se obtuvieron inyectando una solución isotónica de cloruro de potasio (KCI), 0.5 M, en la membrana aboral (periprocto) de los especímenes adultos (Kobayashi, 1971) y se colectaron por separado. Los ovocitos se colocaron en cristalizadores, con agua de mar filtrada y esterilizada, a temperatura controlada (26 °C). Los espermatozoides se recolectaron directamente desde el gonoporo mediante una pipeta y se almacenaron en tubos cónicos (Eppendorf) que se mantuvieron en frío (4°C) hasta su posterior utilización.

El bioensayo se inició ajustándose a los parámetros estandarizados anteriormente, por eso los huevos se incubaron, en placas multipozos, durante 1 h a una concentración de 500 huevos/ml, donde, previamente, se colocaron los diferentes extractos. A continuación, se añadieron los espermatozoides en la proporción 3000 espermatozoides / huevo. Se aseguro así, la mayor eficiencia de fertilización para esa cantidad de espermatozoides / huevos y se incubaron

durante 30 minutos. El bioensayo se terminó añadiendo varias gotas de formalina (al 4%) a los diferentes pocillos. Posteriormente, se calculó la IC₅₀ (concentración a la cual se afecta el 50% de la población) contabilizando el porcentaje de huevos fertilizados para cada concentración, con un intervalo de confianza del 95% para la comparación entre las diferentes concentraciones, usando el método de análisis probit (Finney 1971).

Todo el procedimiento de inducción al desove, y el posterior bioensayo, se llevó a cabo en un cuarto con temperatura controlada a 26 °C.

5.5) BIOENSAYO 2: Inhibición de la división celular durante el desarrollo embrionario en *Echinometra vanbrunti*.

Este bioensayo valora la capacidad del embrión de erizo para desarrollarse normalmente, después de haber sido expuesto a diferentes concentraciones de compuestos tóxicos (Kobayashi, 1969). El bioensayo permite detectar citotoxicidad crónica y capacidad antimitótica. Los estados siguientes de la fertilización, el desarrollo y sus anomalías, se toman como indicadores del efecto de las sustancias tóxicas. Así los huevos fertilizados se dividen en dos células en condiciones normales, pero en presencia de sustancias tóxicas no hay división celular. Además, el estado de blástula se detiene durante su desarrollo y durante la gastrulación el tejido correspondiente al endodermo crece fuera del embrión.

El procedimiento para la obtención de los productos sexuales, es igual al comentado en el bioensayo anterior y la fertilización artificial, así como las condiciones para el desarrollo de las larvas se realizaron según las condiciones óptimas obtenidas en los ensayos de estandarización del método.

La fertilización se efectuó añadiendo una cantidad suficiente de agua de mar con espermatozoides a los ovocitos en una proporción de 3000 espermatozoides por cada huevo, y a una temperatura de 26ºC. La fertilización se detectó con un microscopio estereoscópico mediante la presencia de la membrana de

fertilización. Posteriormente, se concentraron los huevos para que un volumen de 1 ml de agua marina contuviera 1000 huevos fertilizados (de menos de 15 minutos de edad). A continuación, se añadió 1 ml de agua marina en cada uno de los 24 pocillos de 2 ml, en donde, previamente, se habían depositado las cinco concentraciones de cada extracto más el control y se removieron unos segundos cuidadosamente, de tal manera que en cada pocillo hubiera una concentración final de 500 huevos/ml. El proceso se mantuvo hasta que la mayoría de los embriones fertilizados en el control alcanzaron al menos el estado de dos y/o cuatro células. En ese momento, el proceso se detuvo añadiendo unas gotas de formol al 4% (Martín y Uriz, 1993).

El porcentaje de huevos fertilizados no divididos se usó como medida de la toxicidad de los extractos y se calculó la IC₅₀.

Al menos 1 ó 2 h antes de comenzar el ensayo, los extractos (en sus distintas concentraciones) se colocaron en los diferentes pocillos hasta la completa evaporación del disolvente.

5.6) BIOENSAYO 3: Capacidad de eclosión de embriones de *Artemia* sp.

En este bioensayo se valoró la capacidad de eclosión del embrión descapsulado químicamente y cultivado en un medio con los extractos a probar. La idea principal de este bioensayo está basada en el método de Migliore et al (1997), sin embargo, se modificó y se desarrolló un nuevo protocolo con condiciones más estandarizadas.

El bioensayo empieza con la descapsulación de una cantidad adecuada de quistes de *Artemia* sp., siguiendo la metodología clásica descrita por Amat (1985). Posteriormente, se colocaron durante 1 h en un eclosionador bajo condiciones estándar de temperatura (30 °C), iluminación y agitación. Por último, se colocan en los pocillos con los tóxicos a probar, también bajo condiciones estándar.

En cada pocillo se dispusieron, aproximadamente 30 embriones y, cada 12 horas, se contabilizaron el número de embriones y nauplios eclosionados bajo un microscopio estereoscópico, hasta completar 48 horas desde su colocación en los pocillos con los extractos.

En cada conteo se registró el porcentaje de eclosión para cada una de las dosis y el control. Posteriormente, se calculó la LC₅₀ (concentración que reduce el porcentaje de eclosión un 50%) y el intervalo de confianza al 95%, para la comparación entre las diferentes concentraciones en el método de análisis probit (Finney, 1971).

Al menos 1 ó 2 h antes de comenzar el ensayo, los extractos (en sus distintas concentraciones) se colocaron en los diferentes pocillos hasta la completa evaporación del disolvente.

5.7) BIOENSAYO 4: Supervivencia de nauplios 1 de *Artemia* sp. (Meyer *et al.*, 1982).

Los quistes de *Artemia* sp. se hicieron eclosionar siguiendo la metodología clásica descrita por Amat (1985). Posteriormente, los nauplios 1 se cosecharon aprovechando su fototropismo positivo y se colocaron 10 individuos en cada uno de los pocillos, donde, previamente se habían depositado las sustancias tóxicas y se añadió agua marina hasta completar el volumen de experimentación final (5 ml). Transcurridas 12, 24 y 48 horas se registró el porcentajé de mortalidad para cada una de las dosis más el control y se calculó la LC₅₀, con un intervalo de confianza del 95%, para la comparación entre las diferentes concentraciones usando el método de análisis probit (Finney 1971).

Al menos 1 ó 2 h antes de comenzar el ensayo, los extractos (en sus distintas concentraciones) se colocaron en los diferentes pocillos hasta la completa evaporación del disolvente.

Durante el tiempo de exposición al tóxico, no se suministró alimento a los

nauplio 1 debido a que en este estadío las artemias todavía cuentan con reservas alimenticias, no había la necesidad de administrar alimento y su sistema digestivo no es aún funcional (Amat, 1985).

5.8) Pruebas antineoplásicas realizadas sobre tres líneas celulares específicas " in vitro".

Estas pruebas fueron realizadas por la codirectora de esta tesis la Dra. Ma. Dolores García (Pharma Mar, España). Las líneas celulares probadas fueron 3 (linfoma de ratón P388, carcinoma de pulmón humano A549 y carcinoma de colón humano HT29) procedentes de la colección ATCC. Los cultivos celulares se mantuvieron en fase de crecimiento logarítmico. Los extractos se probaron a varias concentraciones hasta determinar la IC₅₀ (concentración de inhibición). Para la realización de los ensayos de actividad se usaron los métodos siguientes:

- 5.8.1. Para líneas celulares que crecen en suspensión (P-388): Modificación del método descrito por Bergeron *et al.*. 1984.
- a) Las células se sembraron en placas de 24 pocillos de 16 mm diámetro a una concentración de 1 x 104 células por pocillo, en los controles para ver el crecimiento celular solo se colocaron células sin extracto. Después de 3 ó 4 días de incubación a 37º C y 10% de CO₂, las placas se observaron a través de un microscopio invertido para ver la posible actividad de los extractos, comparando el crecimiento en los pocillos donde se encuentran estos con el que hay en los pocillos de control de crecimiento.
- b) Para cuantificar la actividad, se hizo el conteo celular con ayuda de un contador electrónico de partículas "Coulter Counter". Se calculó él porcentaje de inhibición de las muestras y se determinó la IC₅₀.

- 5.8.2. Para líneas celulares que crecen en monocapa (A-549, HT-29): Modificación del método descrito por Bergeron *et al.*, 1984.
- a) Las células se sembraron en placas de 24 pocillos de 16 mm diámetro a una concentración de 1 x 104 células por pocillo, en los controles para ver el crecimiento celular solo se colocaron células sin extracto. Después de 3 ó 4 días de incubación a 37º C y 10% de CO₂, las células se tiñeron con cristal violeta al 0,1%, posteriormente se comparo el crecimiento en cada uno de los pocillos con el que se presenta en los pocillos control. Para cuantificar la actividad, después de 3 ó 4 días de incubación a 37º C y 10% de CO₂, las células de cada pocillo se tripsinizaron, se resuspendieron y se realizó el conteo para el cálculo del porcentaje de inhibición de los extractos y se determinó la IC₅₀

VI. TRATAMIENTO DE LA INFORMACIÓN

VI. TRATAMIENTO DE LA INFORMACIÓN

Al comparar la toxicidad de esponjas y gorgonias, los datos, en los casos donde no se cumplía con los criterios de normalidad y homocedasticidad (test de Cochran's), se transformaron mediante el arcoseno del valor. Se utilizaron ANOVAS de Tres Vías y multifactoriales (MANOVAS) para poder determinar si la toxicidad de los extractos varió: 1)en función de las especies, 2) en función del tiempo de exposición, al considerar los tres tiempos para cada especie (en el caso de los bioensayos con *Artemia* sp.), 3) en función de la concentración, al considerar las 6 concentraciones para cada fracción y 4) en función del extracto, al considerar que para cada especie se obtienen dos extractos, esto para ver si existen interacciones significativas entre los parámetros. Posteriormente se realizó una comparación múltiple de medias utilizando la prueba de Tukey. Por último, se utilizaron ANOVAS de una vía para comparar dos grupos de datos y analizar, individualmente, algunos factores como la concentración o el tiempo.

Las ANOVAS de una vía se hicieron utilizando el programa estadístico Statgraphic 5.0. Las MONOVAS se hicieron utilizando el programa GMAV (Underwood, 1997).

Las IC₅₀, LC₅₀ y la comparación entre las diferentes concentraciones fueron calculadas con un intervalo de confianza usando el método de análisis probit (Finney, 1971). Se utilizó una prueba de t de Student (Zar, 1984) para poder comparar (en este caso la media) de los datos de IC₅₀ y LC₅₀ para acetato de etilo con los datos de isopropanol.

VII. RESULTADOS

VII. RESULTADOS

7.1) Estandarización de las condiciones de experimentación con *Echinometra vanbrunti*.

Con esta experiencia, nos planteamos como objetivo principal, obtener los parámetros que nos aseguraran en condiciones experimentales un porcentaje de fertilización "in vitro" por encima del 90%. En ese sentido, se estudió el porcentaje de fertilización con relación a parámetros como: proporción espermatozoide / huevo, temperatura del agua y calidad de la puesta. Los resultados muestran que a la menor concentración ensayada (500 espermatozoides / huevo), el porcentaje de fertilización varia fuertemente en relación a la temperatura, y en la mayoría de los casos los valores estuvieron por debajo del 50% (solo la puesta del 14 de Junio mostró un porcentaje de fertilización del 90%). En general, se observa que la temperatura del agua ejerce gran influencia en la fertilización, sobre todo cuando esta se realiza a la menor temperatura ensayada (23 ºC). Así, en la experiencia del 13 de Junio se obtuvo un porcentaje de fertilización del 25% a la concentración de 500 espermatozoides /huevo, del 70% a 2000 espermatozoides /huevo, del 30 % a 3000 espermatozoides /huevo, y del 60% a 5000 espermatozoides por huevo. En cambio, a 26 °C partir de la concentración de 3000 espermatozoides /huevo se alcanza una fertilización del 70-90% en los diferentes bioensayos, llegando hasta el 90-100% a 3500 espermatozoides / huevo. A 29 ºC, se observa que a partir de 1500 espermatozoides/ huevo se obtiene un porcentaje de fertilización arriba del 80% en los diferentes bioensayos, pero en la mayoría de los casos se presentó posteriormente un desarrollo anormal del embrión.

Otro aspecto importante fue la relación de la temperatura y la calidad de las puestas observándose a 23 °C una gran heterogeneidad en los porcentajes de fertilización en las distintas pruebas. A 26 °C se observó que solo la puesta del 17 Junio, cuyos ovocitos tenían un diámetro medio de 65 micras, alcanzó un porcentaje de fertilización máximo del 60 %. En cambio, a 29°C la calidad de la

puesta no fue tan importante para los porcentajes de fertilización, ya que en 5 de los experimentos se alcanzó un porcentaje de fertilización por encima del 80% a partir de la concentración de 1500 espermatozoides/ huevo.

El análisis de los resultados del efecto combinado de la temperatura y proporción de espermatozoides / huevo sobre la fertilización nos sugiere que la proporción optima de espermatozoides/ huevo a 26 ºC parece estar a 3000 (Fig. 1), ya que en la mayoría de los ensayos se obtuvo un porcentaje de fertilización comprendido entre el 90 y el 100%. A concentraciones mayores se observaba un desarrollo anormal del embrión, el cual, en el mejor de los casos se desarrollaba hasta el estadío de 32 células.

El criterio para decir que los ovocitos de una puesta eran de calidad y por tanto adecuados para ser utilizados fue que su diámetro fuera igual o mayor de 70 micras, y que su contorno no tuviera forma irregular (Fig.1).

Una vez obtenidas las condiciones optimas de fertilización in vitro: 3000 espermatozoides / huevo, a 26 °C, ovocitos de más de 70 micras de diámetro, y con morfología homogénea (redondeados), se realizaron varios ensayos para registrar el tiempo promedio que tardan los huevos en alcanzar los diferentes estadíos de su ciclo de vida (hasta la fase de gástrula). Una vez fertilizados los ovocitos (presencia de la membrana de fertilización), estos se empiezan a dividir a partir de la primera hora, alcanzado la mayoría de ellos el estadío de 16 células a partir de las 4 h. El estadío de mórula se comienza a observar a las 5 h de haberse fertilizado los ovocitos. El estadío de gástrula se empezó a registrar después de 30 h de la fertilización (Fig. 2).

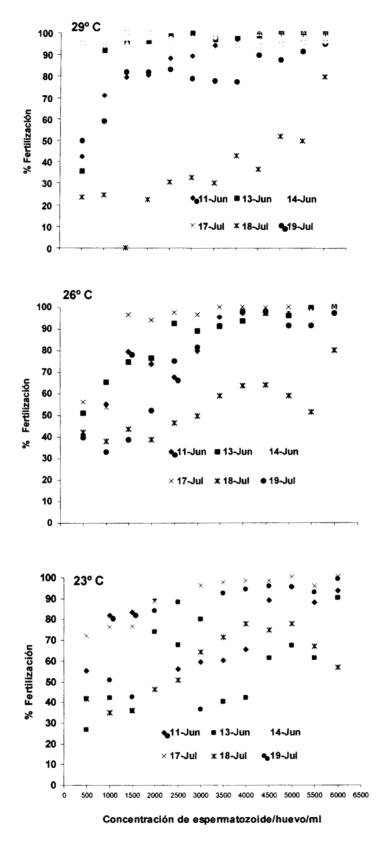


Figura 1. - Efecto combinado de la temperatura y proporción de espermatozoides / huevo sobre la fertilización (valores medios). Cada símbolo representa un experimento (11Junio, 13 Junio, 13 Junio, 17 Julio, 18 Julio y 19 Julio 2000).

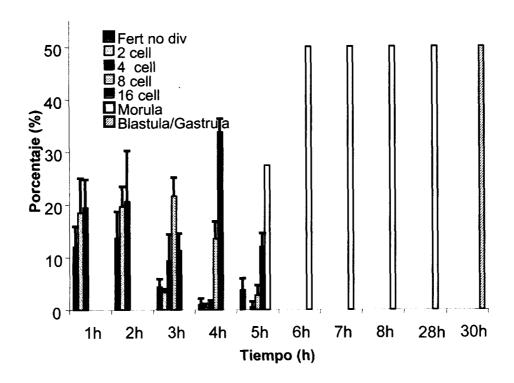


Figura 2. - Porcentaje medio de los distintos estadíos embrionarios del *Echinometra vanbrunti* hasta la fase de gástrula. La barra de error representa la desviación estándar.

7.2) Estandarización de las condiciones de experimentación con *Artemia* sp.

El objeto principal en esta prueba era obtener los tiempos promedios en alcanzarse los diferentes estadíos de desarrollo de *Artemia* sp. hasta la fase de nauplio 3, contabilizados desde el momento que se ponían a eclosionar. Nuestra intención era estimar el tiempo óptimo para cosechar *Artemia* sp., en el estadío que íbamos a utilizar posteriormente en los experimentos (nauplio 1), y poder contar de esa manera con una población lo más homogénea posible en ese estadío. Los resultados indicaron que a las 11 h de haberse iniciado el experimento se registró la aparición de los primeros nauplio 1 (3.3 %), teniendo un

porcentaje del 50% a las 16 h, cuando aparecieron los primeros nauplios 2. El porcentaje máximo de eclosión para nauplio 1 se obtuvo a las 22 h, y se estimó que 16 h desde el momento que se ponían a eclosionar, era el tiempo óptimo para obtener el punto de máxima homogeneización en la población de nauplios 1 (Fig. 3). Los nauplios 3 aparecieron a las 21 h de haberse iniciado el experimento. El experimento se detuvo a las 27 h, cuando el porcentaje de nauplios 1 estaba en el 8 %, nauplios 2 estaban por encima del 50%, y nauplio 3 alcanzaba el 41 %.

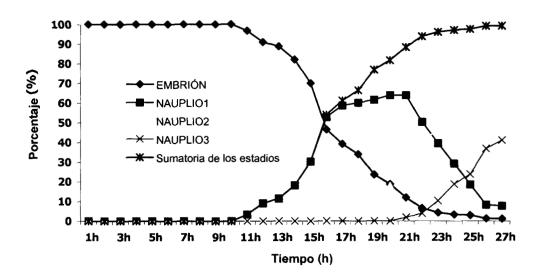


Figura 3. -Porcentaje medio de eclosión y desarrollo larvario de *Artemia* sp. en función del tiempo.

7.3) Evaluación de la toxicidad con el bioensayo: Inhibición de la división celular durante el desarrollo embrionario (Kobayashi, 1969)

Con este bioensayo se evaluó la capacidad de los extractos para impedir el desarrollo embrionario de huevos de *Echinometra vanbrunti* fertilizados

previamente *in vitro*. La toxicidad se contabilizó contando el porcentaje de huevos divididos a las 5 h de haberse fertilizado, con respecto a un control.

El análisis de varianza de una vía, nos indicó que todas las concentraciones ensayadas del extracto de acetato de etilo (IC₅₀ de 5.6 μg/ml), y del isopropanol (IC₅₀ de 19.7 μg/ml) de la esponja Aplysina sp. fueron significativamente tóxicos con respecto al control. Incluso, las concentraciones de 50, 100 y 1000 µg/ml del extracto de acetato de etilo, inhibió el desarrollo en el 100% de las células (Fig.4). El análisis de la comparación de la concentración media de inhibición de la división celular para acetato e isopropanol (IC₅₀s), indicó mayor toxicidad en el extracto con acetato (p<0.05) (Tabla 1). Con respecto a la esponja Dysidea sp., también se obtuvieron diferencias significativas para ambos extractos, desde la concentración 5 μ g/ml (p<0.0001) hasta la de 100 μ g/ml (p<0.0001) (IC₅₀ de 0.9 μ g/ml para el acetato de etilo, e IC50 de 1 µg/ml para el de isopropanol). Para la concentración de 1000 µg/ml se obtuvo un porcentaje de inhibición del 100 % en ambos extractos (Fig.4). Para la esponja Chondrosia chucalla, en el extracto de acetato de etilo hubo diferencias significativas en todas las concentraciones con respecto al control (desde p< 0.05 a p< 0.0001) (IC₅₀ de 18.4 μg/ml). Para el extracto de isopropanol, la concentración de 5 µg/ml fue significativamente diferente (p<0.0001). Además, las concentraciones 10, 50, 100 y 1000 μg/ml tuvieron un 100% de células no divididas, y no pudo ser calculado el valor de su IC50 debido a que los datos estuvieron fuera de rango. Con respecto a la esponja Mycale parishii todas las concentraciones tanto para el extracto de acetato de etilo como el de isopropanol fueron significativamente tóxicas con respecto ál control (p<0.0001) (Fig.4).

Para la esponja *Hyatella intestinalis* todas las concentraciones ensayadas de ambos extractos mostraron toxicidad con respecto al control, notándose que para el extracto con acetato desde la concentración de 50 μg/ml hubo un 100 % de embriones que no se dividieron (IC₅₀ de 2 μg/ml). En los extractos de isopropanol todas las concentraciones fueron significativamente tóxicas con respecto al control y la concentración de 1000 μg/ml inhibió por completo el desarrollo embrionario

(IC₅₀ de 2 μg/ml) (Fig.5). Con respecto a la gorgonia Muricea spl el análisis del factor concentración, indicó que tanto para el extracto con acetato como con el de isopropanol hubo diferencias significativas de toxicidad con respecto al control (p<0.0001) (IC₅₀ de 1.5 μ g/ml para el acetato de etilo e IC₅₀ de 11.8 μ g/ml para isopropanol) (Fig.5). Esta gorgonia en el análisis de la comparación de la concentración media de inhibición de la división celular para acetato e isopropanol resulto ser estadísticamente diferentes (p<0.05), siendo más tóxico el extracto con acetato que el de isopropanol (Tabla 1). Para la gorgonia Pacifigorgia adamsii los datos para el extracto con acetato de etilo salían fuera de rango por lo que no se pudo calcular su IC₅₀. Para el extracto de isopropanol todas las concentraciones fueron significativamente tóxicas con respecto al control (p<0.01 a p<0.0001) (IC₅₀ de 14.8 µg/ml) (Fig.5). En lo que respecta a la gorgonia Lophogorgia sp. las concentraciones de 5, 10, 50, 100 µg/ml de ambos extractos resultaron ser estadísticamente diferente con respecto al control (p<0.0001) (IC₅₀ de 0.25 μg/ml para acetato de etilo, e IC₅₀ 1.1µg/ml). Además, ambos extractos inhibieron completamente el desarrollo de los embriones a la concentración de 1000 µg/ml, resultando ser más tóxico el extracto con acetato (Fig.5)). El análisis de la comparación de la concentración media de inhibición de la división celular no indicó diferencias significativas entre ambos extractos (Tabla 1).

En la figura 6 se presentan las gráficas de las gorgonias *Lophogorgia peruana* y de la *Lophogorgia rigida*. Para la primera especie, ambos extractos mostraron diferencias significativas (p<0.01 y 0.0001) (IC₅₀ de 9.7 μg/ml para el acetato de etilo e IC₅₀ de 72 μg/ml para el isopropanol), siendo más fóxico el extracto de acetato de etilo, ya que desde la concentración, de 100 μg/ml hubo un 100% de inhibición celular. En cambio, con el extracto isopropanol, solo la concentración de 1000 μg/ml presentó un porcentaje de inhibición del 100 %. Además, se obtuvieron diferencias significativas en la comparación de las IC₅₀s (p<0.05), siendo más tóxico el extracto con acetato (Tabla 1). Con respecto a *Lophogorgia rigida*, con el extracto de acetato de etilo, se observó un 10% máximo de división celular en las concentraciones de 5, 10 y 50 μg/ml. En las de 100 y 1000 μg/ml hubo un 0% de

células divididas, siendo significativamente tóxicos con respecto al control (p<0.0001) (IC $_{50}$ de 9.8 μ g/ml). En cambio en el extracto con isopropanol, no hubo división celular en ninguna de las concentraciones ensayadas.

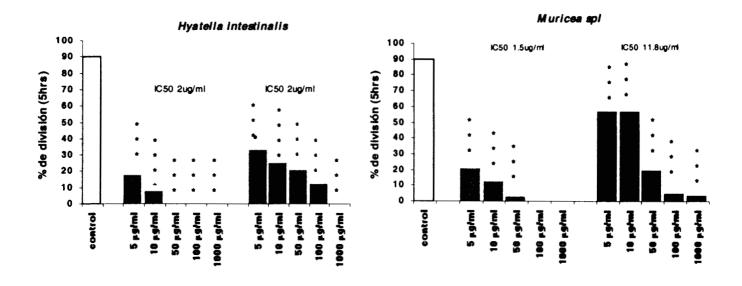



Figura 4. - Porcentaje medio de embriones que alcanzan el estadío de 2 y 4 células (5 h), después de ser fertilizados *in vitro* para cada extracto probado. Los asteriscos indican los tratamientos que son significativamente diferentes del control: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Sobre la figura se indica la IC₅₀

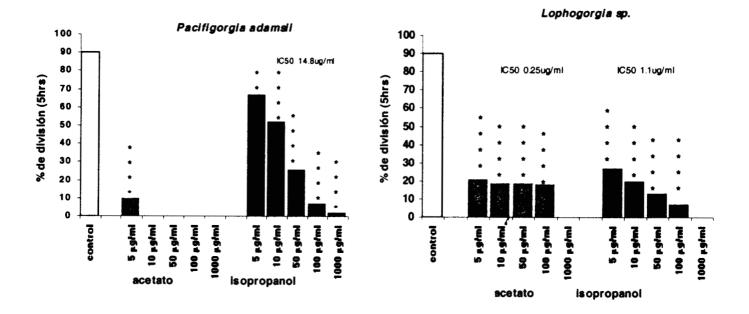
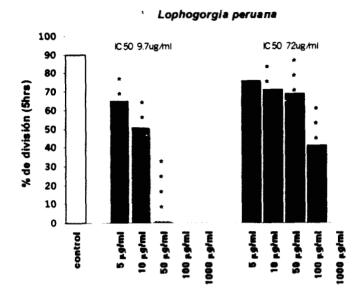



Figura 5. - Porcentaje medio de embriones que alcanzan el estadío de 2 y 4 células (5 h), después de ser fertilizados *in vitro* para cada extracto probado. Los asteriscos indican los tratamientos significativamente diferentes del control: p < 0.05, ** p < 0.01, ***p < 0.001, ***p < 0.0001. Sobre la figura se indica la IC₅₀.

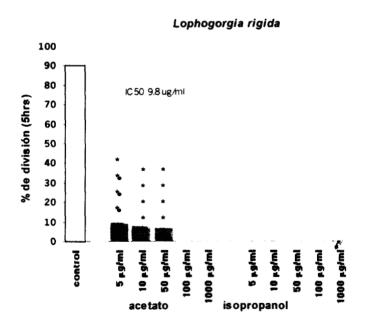


Figura 6. - Porcentaje medio de embriones que alcanzan el estadío de 2 y 4 células (5h), después de ser fertilizados *in vitro* para cada extracto probado. Los asteriscos indican los tratamientos significativamente diferentes del control: * p< 0.05, ** p< 0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la IC_{50.}

Tabla 1. - Concentración media de inhibición de la división celular de embriones de *Echinometra vanbrunti* a las 5 h de exposición al tóxico (IC₅₀). Límites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

^{*} representa diferencias estadísticas (p< 0.05). (L.I, límite inferior; L.S, limite superior; complC₅₀ comparación de IC₅₀). ◆ Símbolo datos fuera de rango para él calculo de la IC₅₀.

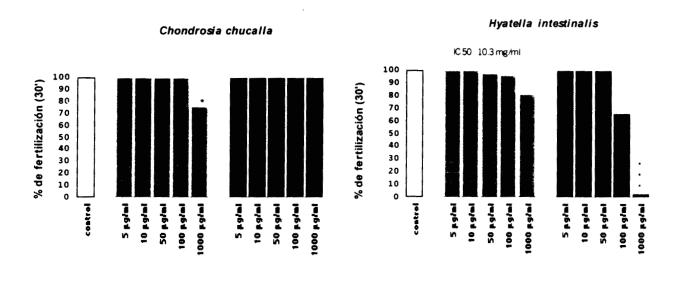
	IC ₅₀	L.I	L.S	compIC ₅₀	valor
	μg/ml	μg/ml	μg/ml	estadístico	critico 95%
Esponjas	Hyatella intestinalis				
acetato	2.0445	0.5153	3.2622	1.0019	4.1237
isopropanol	2.0484	0.6194	4.1427		
	Mycale parishii				
acetato	3.9439	2.2361	5.7786	1.3296	2.7846
isopropanol	2.9662	0.9902	5.7818		
	Dysidea sp.				
acetato	0.9366	0.1839	2.1031	1.0694	6.1294
isopropanol	1.0016	0.2029	2.1452		
	Chondrosia chucalla				
acetato	18.3937	14.4272	22.9705		
◆ isopropano	I				
	Aplysina sp.				
acetato	5.5971	4.7124	6.3214	<u>* 3.5208</u>	1.3720
isopropanol	19.7062	13.7804	23.9641		
Gorgonias	3				
	Lophogorgia rígida				
acetato	9.7640	0.0003	0.6174		
♦isopropano		0.000			
vicopropuno	Lophogorgia peruana	3			
acetato	9.6826	8.1911	11.4036	* 7.437	1.3756
isopropanol	72.0094	54.8756	94.6588		
	Lophogorgia sp.				
acetato	0.2501	0.0051	1.2231	4.5542	33.5838
isopropanol	1.1390	0.2518	2.5833		
	Pacifigorgia adamsii				
◆ acetato	2 2				
isopropanol	14.7550	10.8663	19.2420		
•	Muricea spl				
acetato	1.4691	0.4330	2.6788	<u>* 8.0289</u>	2.75870
isopropanol	11.7879	8.1883	15.9153		
-					

La comparación de las LC50s de inhibición de la división celular, mostró que existían diferencias significativas (p<0.05) en la toxicidad de ambos extractos para las especies *Aplysina sp., Lophogorgia peruana* y *Muricea spl* siendo más tóxico el de acetato de etilo (Tabla 1).

El resultado de las ANOVAS de tres vías indicó que el factor especie por si solo no fue un factor significativo para explicar las diferencias en cuanto a la toxicidad, pero los factores más importantes, y responsables en mayor medida de las diferencias significativas entre los diferentes tratamientos, individualmente fueron el factor extracto (ligado a especie) (p<0.0001) y concentración (p<0.0001). También, fue importante la interacción concentración-extracto(especie) (p<0.0001). Es decir, el primer factor nos indica que el extracto es tóxico dependiendo de la especie en cuestión, por que cada extracto es de una especie diferente y la segunda, nos indica que el extracto es tóxico dependiendo de las concentraciones ensayadas (Tabla 2).

Tabla 2. - Resultados de las ANOVAS de tres vías para el bioensayo división en *Echinometra vanbrunti*. Factores: especies (10 niveles), extractos (2 niveles, ligados a especie), concentración (6 niveles, ortogonal a especie y extracto).

Factores	SS	DF	MS	F	Р	F versus
Especie	20219.794	9	2246.6438	0.82	0.6106	Ex(esp)
Extracto(sp)	27318.648	10	2731.8648	79.02	0.00001	RES
Concentración	247564.632	5	49512.9265	110.66	0.00001	conXex(esp)
Esp X co	17514.671	45	389.2149	0.87	0.6813	conXex(esp)
Con X ex(esp)	22372.294	50	447.4459	12.94	0.00001	RES
RESIDUOS	12445.697	360	34.5714			
TOTAL	347435.739	479				


7.4) Evaluación de la toxicidad con el bioensayo: Viabilidad de ovocitos en *Echinometra vanbrunti*.

Este bioensayo fue diseñado para detectar toxicidad aguda, y valoró la viabilidad de ovocitos de *Echinometra vanbrunti* sometidos a los diferentes extractos durante un tiempo fijo (1 hora) para ser fertilizados posteriormente. La toxicidad se evaluó como porcentaje de huevos fertilizados con respecto a un control.

El análisis de varianza de una vía para la esponja Chondrosia chucalla, nos indicó que solo la concentración de 1000 µg/ml para el extracto con acetato de etilo fue significativamente tóxica con respecto al control (p<0.5). El extracto con isopropanol no produjo ninguna inhibición a ninguna de las concentraciones ensayadas (Fig.7). Con respecto a la esponja Hyatella intestinalis, la concentración significativamente tóxica con respecto al control fue 1000 µg/ml para el extracto con isopropanol (p<0.001) (Fig.7). Para la gorgonia Lophogorgia rigida la concentración tóxica significativa fue la 50 μg/ml para isopropanol (p<0.01), aunque no se pudo calcular su IC₅₀ ya que los datos se salieron de rango. Para el extracto con acetato de etilo la concentración significativamente tóxica con respecto al control fue 1000 μg/ml (IC₅₀ de 1.5 mg/ml) (Fig.7). Con respecto a la esponja Aplysina sp., para el extracto de acetato de etilo las concentraciones significativamente tóxicas fueron las de 5, 100 y 1000 µg/ml (p<0.01 y p<0.05), pero los valores de fertilización no permitieron el cálculo de su IC₅₀. Para el extracto con isopropanol la concentración significativamente tóxica con respecto al control fue la de 100 μg/ml (p<0.05) (IC₅₀ de 115.8 μg/ml). A 1000 μg/ml hubo una inhibición de la fertilización del 100% (Fig. 7).

Para la gorgonia *Pacifigorgia adamsii* las concentraciones que fueron significativamente tóxicas con respecto al control en el extracto con acetato de etilo fueron 50 y 100 μg/ml (p<0.01 y p<0.05) (IC₅₀ de 115.6 μg/ml), a 1000 μg/ml hubo una inhibición de la fertilización del 100%. Para el extracto con isopropanol

las concentraciones significativamente tóxicas con respecto al control fueron 100 y 1000 μg/ml (p<0.05 y p<0.01), debido a que los valores salían fuera de rango no se pudo calcular su IC₅₀ (Fig.8). Con respecto a la esponja Dysidea sp., en el extracto con acetato de etilo todas las concentraciones fueron significativamente tóxicas con respecto al control (p<0.01, p<0.001 y p<0.0001) (IC₅₀ de 12.4 µg/ml). Para el extracto con isopropanol solo la concentración de 1000 µg/ml resultó ser significativamente tóxica (p<0.05) (IC₅₀ de 43 mg/ml) (Fig. 8). Además, se encontraron diferencias significativas entre ambos extractos, siendo más tóxico el extracto de acetato de etilo (Tabla 3). Para la esponja Mycale parishii. el extracto con acetato de etilo fue significativamente tóxico a las concentraciones de 50 y 100 μ g/ml (p<0.05 y p<0.01) (IC50 176.6 μ g/ml). La concentración de 1000 µg/ml inhibió por completo la viabilidad de los ovocitos. Con respecto al extracto con isopropanol, se obtuvieron diferencias significativas a partir de 50 µg/ml (p<0.01) (IC50 17.3 µg/ml). Además, a las concentraciones de 100 v 1000 μg/ml se obtuvo un porcentaje de fertilización del 0% (Fig.8). Para esta especie se obtuvieron diferencias significativas en sus IC50s, siendo más tóxico el extracto de isopropanol. Con respecto a la gorgonia Muricea spl, se obtuvieron diferencias 1000 µg/ml significativas en toxicidad con respecto al control para 1000 μg/ml en ambos extractos (Fig.8). En la figura 9 se muestra a las gorgonias Lophogorgia peruana y Lophogorgia sp., para la primera especie, el análisis de varianza de una vía, indicó que no había diferencias significativas con respecto al control para ninguna de las concentraciones, a 1000 µg/ml hubo una inhibición de la fertilización del 100% con ambos extractos (Fig. 9). Para el acetato de etilo los datos se salieron de rango por lo que no fue posible él calculo de una IC50, para el extracto con isopropanol (IC50 de 158 μg/ml). Para la segunda especie, el extracto con acetato de etilo mostró toxicidad a 50, 100 μg/ml (p<0.05) y 1000 μg/ml (p<0.001) (IC50 de 51 μg/ml). Para el extracto con isopropanol solo la concentración de 1000 µg/ml fue significativamente tóxica con respecto al control (p<0.0001) (IC50 de 381 µg/ml). El análisis de sus valores medios (IC50) arrojó que fue significativamente diferente la toxicidad del extracto.

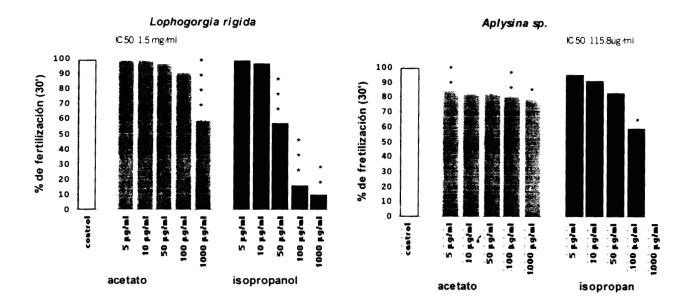


Figura 7. -Porcentaje medio de ovocitos fertilizados (a los 30') después de haberse sometido a la presencia del tóxico por 1 h. Los asteriscos, indican los tratamientos que son significativamente diferentes del control: *p<0.05, **p<0.01, ****p<0.001, ****p<0.0001. Sobre la figura se indica la IC_{50.}

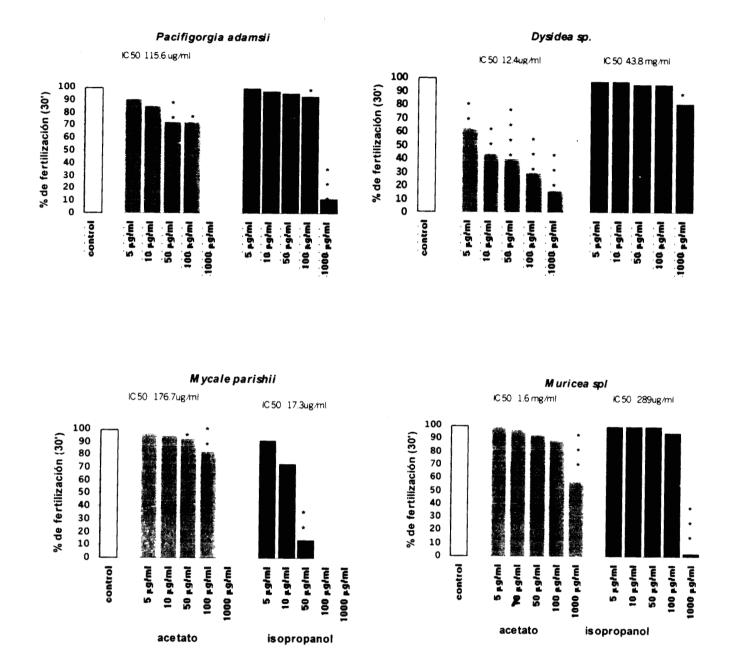
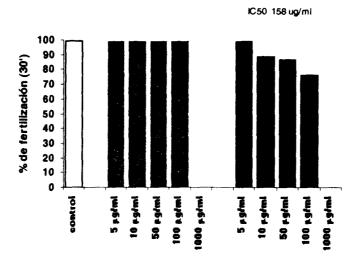



Figura 8. -Porcentaje medio de ovocitos fertilizados (a los 30') después de haberse sometido a la presencia del tóxico por 1 h. Los asteriscos, indican los tratamientos significativamente diferente del control: p<0.05, p<0.01, p<0.01, p<0.001, p<0.001. Sobre la figura se indica la p<0.001.

Lophogorgia peruana

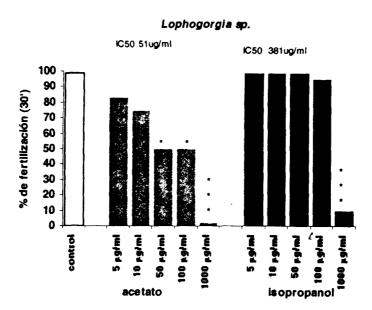


Figura 9. -Porcentaje medio de ovocitos fertilizados (a los 30´) después de haberse sometido a la presencia del tóxico por 1 h. Los asteriscos, indican los tratamientos significativamente diferente del control: *p<0.05, **p<0.01, ***p<0.001, ***p<0.0001. Sobre la figura se indica la IC₅₀.

Tabla 3. - Concentración media de inhibición (IC₅₀) de la fertilización de ovocitos de *Echinometra vanbrunti* a los 30´ de exposición al tóxico. Limites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

^{*} representa diferencias estadísticas (p< 0.05), (L.I, limite inferior; L.S, limite superior; complC₅₀ comparación de IC₅₀). ♦ Símbolo datos fuera de rango para él calculo de la IC₅₀.

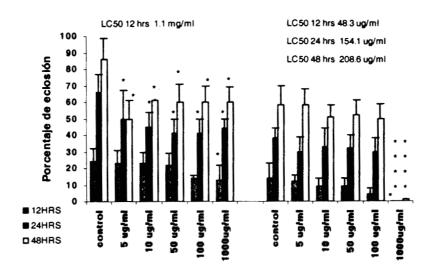
	IC ₅₀	L.I	L.S	compIC ₅₀	
Esponjas	μg/ml Chondrosia chucalla	<i>µ</i> g/ml a	<i>μ</i> g/ml	valor estadístico	valor critico 95%
◆ acetato					
♦ isopropano					
	Hyatella intestinalis				
acetato	10264.4765	3227.7111	207219.7031		
♦ isopropano					
	Mycale parishii				
acetato	176.7264	146.5216	228.0015	<u>* 10.2189</u>	1.3081
isopropanol	17.2940	14.8647	20.1319		
	Dysidea sp.		0.1.1000		44.000
acetato	12.3796	5.8799	21.1808	* 3475.1401	11.6822
isopropanol	43020.8437	6678.5361	6447962.5		
	Aplysina sp.				
◆acetato	115.7561	94.2975	144.5519		
isopropanol	115.7561	34.2313	144.5519		
Gorgonias	•				
	IC ₅₀	L.I	L.S	compIC ₅₀	valor
	μ g/ml	μg/ml	μ g/ml	estadístico	critico 95%
	Lophogorgia rígida				
acetato	1519.8453	972.6471	3017.7956		
◆ isopropano					
◆ acetato	Lophogorgia peruan	ia .			
isopropanol	158.0042	132.0432	196.3480		
	Lophogorgia sp.				
acetato	51.2397	39.3181	67.4194	<u>* 7.4317</u>	1.4147
isopropanol	380.8011	303.5076	469.7016		
	Pacifigorgia adamsii				
acetato	115.6006	90.5259	151.0719		
◆ isopropanol					
acetato	<i>Muricea spl</i> 1562.8962	923.4468	3494.8740	* 5.4087	2.0413
isopropanol	288.9600	230.0345	365.1809	<u> </u>	2.0413
, ,					

En resumen, el análisis de los valores medios (IC50) indica que las especies que mostraron diferencias significativas entre sus extractos (acetato de etilo e isopropanol) fueron: las esponjas *Mycale parishii* y *Dysidea sp.*, así como las gorgonias *Lophogorgia sp.* y *Muricea spl.* (Tabla 3).

El resultado de las ANOVAS de tres vías indicó que el factor especie no fue significativo por si solo, ya que individualmente los factores más importantes, responsables en mayor medida de las diferencias significativas entre los diferentes tratamientos, fueron extracto(especie) (p<0.00001) y concentración (p<0.00001). También, fue importante la interacción concentración-extracto(especie) (p<0.0001); es decir, el extracto es tóxico dependiendo de la concentración ensayada, por que cada extracto es de una especie diferente y el factor concentración, nos indica que el extracto es tóxico dependiendo de las concentraciones ensayadas (Tabla 4).

Tabla 4. - Resultados de las ANOVAS de tres vías para el bioensayo fertilización en *Echinometra vanbrunti*. Factores: especies (10 niveles), extractos (2 niveles, ligados a especie), concentración (6 niveles, ortogonal a especie y extracto).

Factores	SS	DF	MS	F	Р	F versus
Especie	14769.1486	9	1641.0165	0.87	0.5789	Ex(esp)
Extracto(esp)	18891.1842	10	1889.1184	55.72	0.00001	RES
Concentración	86402.1547	5	17280.4309	46.26	0.00001	conXex(esp)
EspX co	19390.4117	45	430.8980	1.15	0.3104	conXex(esp)
Con X ex(esp)	18676.4396	50	373.5288	11.02	0.00001	RES
RESIDUOS	4068.3440	120	33.9029			
TOTAL	162197.682	239				


7.5) Evaluación de la toxicidad con el bioensayo capacidad de eclosión de embriones de *Artemia* sp.

Este bioensayo se utilizó para valorar la toxicidad de los extractos en embriones de *Artemia* sp. descapsulados químicamente, y cultivados en presencia del tóxico.

Para la esponja *Aplysina* sp., el análisis de la varianza de una vía para el extracto de acetato de etilo, indicó, que se comienza a detectar toxicidad a las 12 h de exposición (1000 μg/ml, p<0.05, LC₅₀ de 1.1 mg/ml). A las 24 y 48 h se registra toxicidad a partir de la concentración menor ensayada (5 μg/ml, p<0.05). Para el extracto de isopropanol, a partir de las 12 h hubo toxicidad en la concentración de 1000 μg/ml (p<0.05 12 h) (Fig.10). El análisis de la concentración media letal a las 12 h indicó diferencias entre ambos extractos (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 5). Además en el análisis de la comparación de la concentración media letal para isopropanol (12, 24, 48 h) indicaron que hubo diferencias significativas entre el tiempo de exposición (12-48 h) (p<0.05) (Tabla 7).

Con respecto a la esponja *Mycale parishii*, para el extracto de acetato de etilo no se observaron diferencias significativas durante las primeras 12 h de tratamiento a ninguna de las concentraciones probadas. A las 24 horas, se observa toxicidad a partir de la concentración de 100 μ g/ml (p<0.01) (LC₅₀ de 3.6 mg/ml 12 h, LC₅₀ de 10.7 mg/ml 24 h, LC₅₀ de 305 mg/ml 48 h). El extracto con isopropanol a las 12 h fue tóxico desde la concentración de 100 μ g/ml (p<0.01) (LC₅₀ de 99.3 μ g/ml). A las 24 horas fue tóxico desde la concentración de 10 μ g/ml (p<0.05) a 1000 μ g/ml (p<0.0001) (LC₅₀ de 127.4 μ g/ml). A las 48 h de exposición hubo toxicidad desde la concentración de 50 μ g/ml (24 h, LC₅₀ de 136.7 μ g/ml 48 h) (Fig.10). En el análisis de la comparación de la concentración media letal a las 12 y 48 h para acetato e isopropanol arroja diferencias significativas entre ambos (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 5 y 7).

Aplysina sp.

Mycale parishii

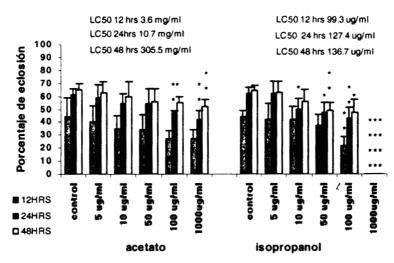
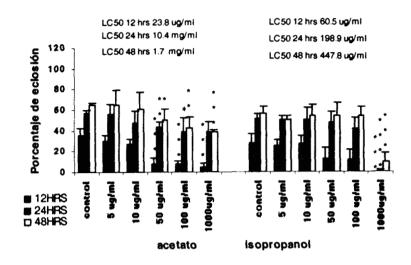


Figura 10. -Porcentaje medio de eclosión de embriones de *Artemia* sp. a las 12, 24 y 48 hrs. de haberse sometido a la presencia del tóxico. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: *p<0.05, **p<0.01, ***p<0.001, ****p<0.001. Sobre la figura se indica la LC₅₀.


Los extractos de la esponja *Hyatella intestinalis* indujeron toxicidad desde las 12 h de exposición: a partir de 50 μg/ml (p<0.001) para el acetato de etilo y de 1000 μg/ml (p<0.001) para el extracto de isopropanol (Fig. 11) y se encontraron diferencias significativas entre las LC₅₀s de ambos extractos a partir de las 24 h de exposición, resultando más tóxica la fracción isopropanólica (p<0.05) (Tabla 6). Además, se encontraron diferencias significativas entre las LC₅₀s a las 12, 24 y 48 h para acetato e isopropanol (p<0.05) (Tabla 8).

De igual manera, para la esponja *Chondrosia chucalla* se detectó toxicidad desde las 12 h de exposición a partir de 50 μg/ml para ambos extractos. A las 24 h se observo toxicidad a partir de la concentración de 100 μg/ml (p<0.05) para el isopropanol y a las 48 h se encontraron diferencias significativas en la concentración de 1000 μg/ml (p<0.05) para el extracto de isopropanol (LC₅₀ de 194.5 μg/ml 12 h, LC₅₀ de 182.64 mg/ml 24 h, LC₅₀ de 585 mg/ml 48 h) (Fig. 11). No se observaron diferencias significativas entre las LC₅₀s de ambos extractos a las 12, 24 y 48 h de exposición (Tabla 5, 6, 7). Además el análisis de la comparación de las LC₅₀s indicó que hubo diferencias significativas para isopropanol entre las 12 y 48 h de exposición (p<0.05) (Tabla 8).

Para la esponja *Dysidea* sp., se detectó toxicidad a partir de las 12 h de exposición para ambos extractos, y a partir de 50 μg/ml (p<0.05). Para el extracto de acetato (LC₅₀ de 59.3 μg/ml 12 h, LC50 de 171.9 μg/ml de 24 h y LC₅₀ de 62 mg/ml de 48 h). Debido a que los datos se salieron del rango de las concentraciones ensayadas no se pudo calcular las LC_{50s} del extracto de isopropanol (Fig.12). Además en el análisis de la comparación de la concentración media letal para acetato indicó que hubo diferencias significativas entre los tiempos 12 y 24 h (p<0.05) (Tabla 8).

Con respecto a la gorgonia *Pacifigorgia adamsii*, para el extracto de acetato de etilo a partir de las 12 h se registro toxicidad, a partir de la concentración de 100 μ g/ml (p<0.0001) (LC₅₀ 313 μ g/ml 12 h, LC₅₀ de 354.6 μ g/ml 24 h y LC₅₀ de 440.2.6 μ g/ml). Para el extracto de isopropanol la toxicidad se registró a partir de 10 μ g/ml

Hyatelia intestinalis

Chondrosia chucalla

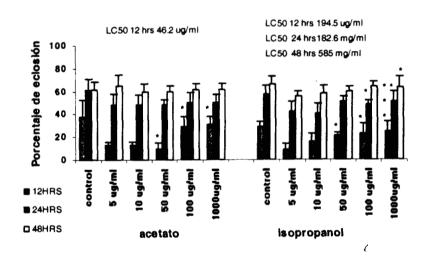
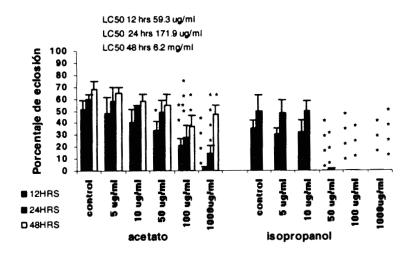
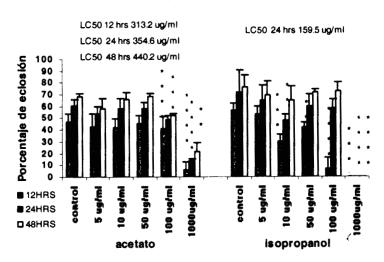
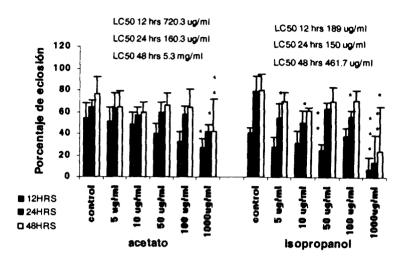



Figura 11. -Porcentaje medio de eclosión de embriones de *Artemia* sp. sometidos a la presencia del tóxico, por un periodo de 12, 24 y 48 hrs. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: *p<0.05, **p<0.01, ***p<0.001, ****p<0.001. Sobre la figura se indica la LC50.

Dysidea sp.

Pacifigorgia adamsii




Figura 12. -Porcentaje medio de eclosión de embriones de *Artemia* sp. sometido a la presencia del tóxico, por un periodo de 12, 24 y 48 hrs. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: * p<0.05, **p<0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la LC₅₀.

(p<0.0.5) a 1000 μg/ml (p<0.0001) para 12 h (p<0.001), y debido a que los datos se salieron de rango, solo se pudo calcular su LC₅₀, a las 24 h (LC₅₀, de 159.5 μg/ml) a las 48 h de exposición al tóxico solo la concentración de 1000 μg/ml fue significativamente tóxica respecto al control (p<0.0001) (Fig.12), en el análisis de la comparación de la concentración media letal a las 24 h para acetato e isopropanol resulta ser estadísticamente diferente (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 6).

Para la gorgonia *Lophogorgia peruana* se detectó toxicidad a partir de las 12 h de exposición para el extracto de acetato de etilo en la concentración de 1000 μg/ml (p<0.05) (LC₅₀ de 720.3 μg/ml 12 h , LC₅₀ de 160.3 μg/ml 24 h, LC₅₀ de 5.3 mg/ml 48 h) , para el extracto de isopropanol a las 12 h la toxicidad se detectó a 50 μg/ml (p<0.01) y a 1000 μg/ml (p<0.001) (LC₅₀ de 189 μg/ml) en cambio a las 24 h la toxicidad se registró desde 5 μg/ml (p<0.05) (LC₅₀ de 150 μg/ml) a las 48 h la concentración significativamente tóxica fue 1000 μg/ml (p<0.05) (LC₅₀ de 461.7 μg/ml) (Fig. 13), en el análisis de la comparación de la concentración media letal (12, 24, 48 h) para acetato e isopropanol indicando que solo hubo diferencias significativas para el extracto de isopropanol (24-48 h) (p<0.05) (Tabla 9).

Con respecto a la gorgonia *Lophogorgia rigida* se obtuvo que durante las primeras 12 horas de tratamiento solo la concentración de 1000 μg/ml de acetato de etilo fue tóxica (p<0.05) (LC₅₀ de 213.6 μg/ml). Con respecto al extracto de isopropanol a las 12 h las concentraciones significativamente tóxicas fueron a partir de 50 μg/ml (p<0.01) (LC₅₀ de 42.3 μg/ml), a las 24 y 48 h de tratamiento la concentración tóxica fue 1000 μg/ml la debido a los datos obtenidos solo fue posible calcular la LC₅₀ de 223.4 μg/ml para las 48 h (Fig.13). En el análisis de la comparación de la concentración media letal a las 12 y 48 h para acetato e isopropanol resultando ser estadísticamente diferentes (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 5 y 7). Además el análisis de la comparación de las LC₅₀s para los distintos tiempos de exposición para acetato e isopropanol indico que hubo diferencias significativas en el acetato de etilo entre el tiempo 12 y

Lophogorgia peruana

Lophogorgia rigida

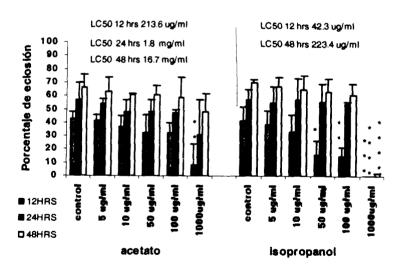
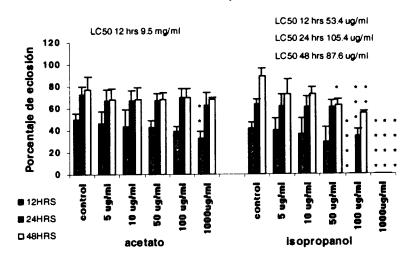


Figura 13. - Porcentaje medio de eclosión de embriones de *Artemia* sp. sometido a la presencia del tóxico, por un periodo de 12, 24 y 48 hrs. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: * p<0.05, **p<0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la LC₅₀.


48 h y para el extracto de isopropanol 12 y 24 h (p<0.05) (Tabla 8, 9).

Para la gorgonia *Muricea* spl., se obtuvo que la fracción de acetato de etilo durante las primeras 12 horas de tratamiento solo a la concentración de 1000 μg/ml fue tóxica (p<0.01) (LC₅₀ de 9.5 mg/ml). En la fracción de isopropanol a las 12 y 24 h de tratamiento se registró toxicidad a partir de 100 μg/ml (p<0.0001) (LC₅₀ de 53.4 μg/ml 12 h, LC₅₀ de 105.4. μg/ml 24 h) y a las 48 h a partir de 50 μg/ml se registro toxicidad (p<0.5) (LC₅₀ de 87.6 μg/ml) (Fig.14). En el análisis de la concentración media letal a las 12 h para acetato e isopropanol resulta ser estadísticamente diferente (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 5). Además el análisis de la comparación de las LC₅₀s para los distintos tiempos de exposición para isopropanol indico que hubo diferencias significativas entre el tiempo 12 y 48 h (p<0.05) (Tabla 9).

Para la gorgonia *Lophogorgia* sp., se obtuvo que en la fracción de acetato de etilo es a partir de las 24 horas, cuando se observa toxicidad en las concentraciones de 100 y 1000 μg/ml (p<0.05 a p<0.001) (LC₅₀ de 68.3 mg/ml 24 h, LC₅₀ de 14.1 mg/ml 48 h). Con respecto al extracto de isopropanol la toxicidad se registro a partir de las primeras 12 horas de exposición a partir de la concentración de 50 μg/ml (p<0.01) (LC₅₀ de 35 μg/ml 12 h, LC₅₀ de 1115. μg/ml 24 h, LC₅₀ de 126 μg/ml 48 h) (Fig.14). En el análisis de la concentración media letal a las 24 h para acetato e isopropanol resulta ser estadísticamente diferente (p<0.05) siendo más tóxico el extracto de isopropanol (Tabla 6). Además el análisis de la comparación de las LC₅₀s para los distintos tiempos de exposición para isopropanol indico que hubo diferencias significativas entre los tiempos 12 y 24 h, 12 y 48 h (p<0.05) (Tabla 9).

En resumen, las especies que mostraron diferencias significativas entre ambos extractos (LC₅₀s) a las 12 h fueron: *Mycale parishii, Aplysina* sp., *Lophogorgia rigida*, y *Muricea* spl (Tabla 5), a las 24 h fueron las especies *Hyatella* sp., *Lophogorgia* sp. y *Pacifigorgia adamsii* (Tabla 6), y a las 48 horas *Mycale parishii* y *Lophogorgia rigida* (Tabla 7).

Muricea spi

Lophogorgia sp.

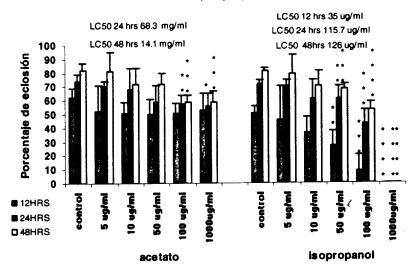


Figura 14. - Porcentaje medio de eclosión de embriones de *Artemia* sp. sometido a la presencia del tóxico, por un periodo de 12, 24 y 48 hrs. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: • p<0.05, **p<0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la LC₅₀.

Tabla 5. - Concentración letal media (LC₅₀) para embriones de *Artemia* sp. a las 12 h de exposición a los tóxicos. Límites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

 $^{^{\}circ}$ representa diferencias estadísticas (p< 0.05). (L.I, límite inferior; L.S, límite superior; compLC₅₀ comparación de LC₅₀). $^{\diamond}$ datos fuera de rango para él calculo de la LC₅₀

12 hrs.	LC ₅₀	L.I	L.S	com	pLC ₅₀
Esponjas	<i>µ</i> g/ml	μg/ml	<i>μ</i> g/ml	valor estadístico	valor critico 95%
	Chondrosia chucalla	•			
acetato	46.1589	10.1380	141.3303	4.2142	7.8635
isopropanol	194.5247	55.6094	1189.8380		
	Hyatella intestinalis				
acetato	23.8761	8.8846	46.3444	2.5342	2.8783
isopropanol	60.5068	27.7454	98.2687		
	Mycale parishii				
acetato	3625.8562	169.8277	77412.7734	• <u>36.506</u>	22.3327
isopropanol	99.3222	72.3605	200.0576		
	Dysidea sp.				
acetato	59.2985	36.4454	89.6912		
♦ isopropanol					
• •	Aplysina sp.				
acetato	1087.4019	106.1523	11139.1162	<u> 22.529</u>	15.1358
isopropanol	48.2668	8.1017	105.1702		
Gorgonias					
•	Lophogorgia rígida				
acetato	213.5992	108.7038	395.3789	<u>* 5.0486</u>	2.2639
isopropanol	42.3084	23.7507	64.4280		
	Lophogorgia peruan				
acetato	720.3415	255.1735	8807.7939	0.2623	8.9833
isopropanol	188.9621	83.7819	470.4071		
	Lophogorgia sp.			£	
◆ acetato					
isopropanol	34.9644	21.8891	49.7699		
	Pacifigorgia adamsii				
acetato	313.1632	150.4167	484.9943		
◆ isopropanol					
	Muricea spi				
acetato	9470.7764	249.5567	359419.813	<u>• 177.3046</u>	38.0322
isopropanol	53.4153	47.1312	60.5373		

Tabla 6. - Concentración letal media (LC₅₀) para embriones de *Artemia* sp. a las 24 h de exposición a los tóxicos. Límites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

[♦] datos fuera de rango para él calculo de la LC₅₀

24 hrs.	LC ₅₀	L.I	L.S	CompLC ₅₀	
Esponjas	μg/ml Chondrosia chu	μg/ml	μ g /mi	valor estadístico	Valor critico 95%
acetato	Ononarosia cin	Ivana			
isopropanol	182664.3906	437.2092	76316512.0		
	Hyatella intestir	nalis			
acetato	10417.3770	832.3560	2.0633	<u>* 52.3633</u>	6.5823
isopropanol	198.9441	125.3077	297.9519		
•	Mycale parishii				
acetato	10660.8770	1150.8531	318031423078400	83.6645	14945583104
isopropanol	127.4242	95.9557	176.7589		
	Dysidea sp.				
acetato	171.8612	101.9430	293.1844		
♦ isopropanol					
	Apiysina sp.				
◆ acetato					
isopropanol	154.0847	98.5157	396.9219		
Gorgonias	Lophogorgia ríg	nida			
acetato	1834.1662	529.6477	136270.3281		
		020.0477	100270.0201		
	Lophogorgia pe	eruana			
acetato	160.3006	95.3815	302.0119	1.0689	2.4302
isopropanol	149.9678	83.1412	318.0791		
	Lophogorgia sp) .		C	
acetato	68285.2266	2549.1475	3.3434	* 590.3712	13.5825
isopropanol	115.6649	92.9138	159.3203		
	Pacifigorgia ada	amsii			
acetato	354.6585	217.2366	543.7234	<u>* 2.2239</u>	1.7405
isopropanol	159.4775	122.2544	226.9409		
	Muricea spi				
• acetato					
isopropanol	105.3782	69.3113	160.2130		

 $^{^{\}bullet}$ representa diferencias estadísticas (p< 0.05). (L.I, límite inferior; L.S, límite superior; compLC₅₀ comparación de LC₅₀).

Tabla 7. - Concentración letal media (LC₅₀) para embriones de *Artemia* sp. a las 48 h de exposición a los tóxicos. Límites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

 $^{^{\}bullet}$ representa diferencias estadísticas (p< 0.05). (L.I, límite inferior; L.S, límite superior; compLC₅₀ comparación de LC₅₀). $^{\bullet}$ datos fuera de rango para él calculo de la LC₅₀

48 hrs.	LC ₅₀	L.I	L.S	compLC ₅₀	
Esponjas	μg/ml	μg/ml	µg/ml	valor estadístico	valor critico 95%
	Chondrosia d	chucall a			
◆ acetato	504055 0750	0540000	050000704		
isopropanol	584955.3750	954.9289	358322784		
	Hyatella intes				
acetato	1727.5479	530.0747	48942.3008	3.8581	22.0400
isopropanol	447.7708	68.0138	670.5770		
	Mycale parisi				
acetato	305732.469	328.6949	284374176	<u>*2236.1123</u>	936.5581
isopropanol	136.7250	103.2707	190.5726		
	Dysidea sp.				
acetato	6156.8369	801.6500	578815104	33.5967	51758.8906
isopropanol	183.2571	43.3220	775.1983		
	Aplysina sp.				
◆ acetato					
isopropanol	208.5694	136.0345	304.4928		
Gorgonias					
•	Lophogorgia	•			- 1000
acetato	16712	1695.5441	3.7784	<u>* 74.8157</u>	5.1060
isopropanol	223.3756	156.5457	307.4865		
	Lophogorgia	•			
acetato	5295.5874	931.3928	3036256.2500	11.4700	299.2970
isopropanol	461.6900	276.9370	937.3461		
	Lophogorgia	•			
acetato	14142.2314	1875.9768	38164728.0000	112.2634	1358.6640
isopropanol	125.9736	102.1843	166.1326	•	
	Pacifigorgia a	adamsii			
acetato	440.2063	277.7799	705.7873		
◆ isopropanol					
	Muricea spi				
◆ acetato					
isopropanol	87.6106	65.9558	116.9041		

Tabla 8. - Comparación de la concentración letal media (compLC $_{50}$) para embriones de *Artemia* sp. a las 12, 24 y 48 h de exposición al tóxico. Se indica el valor del estadístico obtenido en la comparación de medias y el valor crítico al 95% para cada especie comparada.

[•] representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀, comparación de LC₅₀).

		LC ₅₀	L.I	L.S compLC		pLC ₅₀
Esponjas		μg/ml Chondrosia	μg/ml chucalla	μg/ml	valor estadístico	valor critico 95%
12 hrs. 24 hrs.	isopropanol isopropanol	194.5 182664.4	55.6 437.2	1189.8 76316512.0	<u>• 939.0293</u>	510.8
24 hrs. 48 hrs.	isopropanol isopropanol	182664.4 584955.4	437.2 954.9	76316512.0 358322784.0	3.2	6697.6
12 hrs. 48 hrs.	isopropanol isopropanol	194.5247 584955.3750		1189.8380 358322784	<u>* 3007.1005</u>	740.2137
12 hrs. 24 hrs.	acetato acetato	Hyatella inte 23.8761 10417.3770	8.8846 832.3560	46.3444 2.0633	<u>• 436.3098</u>	7.5133
24 hrs. 48 hrs.	acetato acetato	10417.3770 1727.5479	832.3560 530.0747	2.0633 48942.3008	6.0301	27.4791
12 hrs. 48 hrs.	acetato acetato	23.8761 1727.5479	8.8846 530.0747	46.3444 48942.3008	<u>* 72.3547</u>	17.8931
12 hrs. 24 hrs.	isopropanol isopropanol	60.5068 198.9441	27.7454 125.3077	98.2687 297.9519	<u>* 3.288</u>	2.1719
24 hrs. 48 hrs.	isopropanol isopropanol	198.9441 447.7708	125.3077 68.0138	297.9519 670.5770	2.2507	4.3151
12 hrs. 48 hrs.	isopropanol isopropanol	60.5068 447.7708	27.7454 68.0138	98.2687 670.5770	• 7.4003	4.6523
12 hrs.	acetato	Mycale paris 3625.8562	shii 169.8277	77412.7734 318031423002	2.9402	18202732544
24 hrs. 24 hrs.	acetato	10660.8770 10660.8770	1150.8531 1150.8531	8 318031423	28.6800	39618195456
48 hrs.	acetato	305732.4688		284374176.000 0		
12 hrs. 48 hrs.	acetato acetato	3625.8562 305732.4688	169.8277 328.6949	77412.7734 284374176.000 0	84.3200	1789.0741

Continuación Tabla 8.

		LC ₅₀ L.I L.S		L.S	compLC ₅₀	
Esponjas		<i>μ</i> g/ml	<i>μ</i> g/ml	<i>µ</i> g/mi	valor estadístico	valor critico 95%
		Mycale pari	=	μgmm	valor estatristico	3 0 %
12 hrs.	Isopropanol	99.3222	72.3605	200.0576	1.2829	1.8386
24 hrs.	Isopropanol	127.4242	95.9557	176.7589		
24 hrs.	Isopropanol	127.4242	95.9557	176.7589	1.0730	1.5419
48 hrs.	Isopropanol	136.7250	103.2707	190.5726		
12 hrs.	Isopropanol	99.3222	72.3605	200.0576	1.3766	1.8395
48 hrs.	Isopropanol	136.7250	103.2707	190.5726		
		Dysidea sp.				
12 hrs.	acetato	59.2985	36.4454	89.6912	<u>* 2.8982</u>	2.0027
24 hrs.	acetato	171.8612	101.9430	293.1844		
		.=	101 0 100	000.1011	07.0047	4700 0005
24 hrs.	acetato	171.8612	101.9430	293.1844	35.8245	4782.6035
48 hrs.	acetato	6156.8369	801.6500	578815104.0000		
12 hrs.	acetato	E0 200E	36.4454	89.6912	103.8279	47455.9336
12 11/8. 48 hrs.		59.2985 6156.8369	801.6500	578815104.0000	103.0275	47499.9330
40 1113.	acetato	Aplysina sp		576615104.0000		
12 hrs.	isopropanol	48.2668	8.1017	105.1702	3.1923	4.8580
24 hrs.	isopropanol	154.0847	98.5157	396.9219		
24 hrs.	isopropanol	154.0847	98.5157	396.9219	1.3536	2.2975
48 hrs.	isopropanol	208.5694	136.0345	304.4928		
	•					
12 hrs.	isopropanol	48.2668	8.1017	105.1702	<u>• 4.3218</u>	4.3059
48 hrs.	isopropanol	208.5694	136.0345	304.4928		
Gorgonias	•	Lophogorgi	a rígida		<i>t</i>	
12 hrs.	acetato	213.5992	108.7038	395.3789	8.5870	41.1422
24 hrs.	acetato	1834.1662	529.6477	136270.3281		
O4 bec		1004 1000	E00 6477	100070 0001	0.1115	EA 2404
24 hrs. 48 hrs.	acetato acetato	1834.1662 16712	529.6477 1695.5441	136270.3281 3.7784	9.1115	54.2101
70 III 5 .	averall	10/12	1030.0441	5.77 0 -		
12 hrs.	acetato	213.5992	108.7038	395.3789	<u>• 78.24</u>	5.5894
48 hrs.	acetato	16712	1695.5441	3.7784		

Tabla 9. - Comparación de la concentración letal media (compLC $_{50}$) para embriones de *Artemia* sp. a las 12, 24 y 48 h de exposición al tóxico. Se indica el valor del estadístico obtenido en la comparación de medias y el valor crítico al 95% para cada especie comparada.

 $^{^{\}circ}$ representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀, comparación de LC₅₀).

		LC_{50}	L.I	L.S	comp	LC ₅₀
Gorgonia	S					
•		μg/ml	μg/ml	hog/ml	valor estadístico	valor critico 95%
40.		Lophogorgi	•			4 4444
12 hrs.	isopropanol	42.3084	23.7507	64.4280	<u>• 5.2797</u>	1.8313
24 hrs.	isopropanol	223.3756	156.5457	307.4865		
		Lophogorgi	•			
12 hrs.	acetato	720.3415	255.1735	8807.7939	4.4937	8.1609
24 hrs.	acetato	160.3006	95.3815	302.0119		
24 hrs.	acetato	160.3006	95.3815	302.0119	33.0353	298.1548
48 hrs.	acetato	5295.5874	931.3928	3036256.25		
12 hr.s	acetato	720.3415	255.1735	8807.7939	7.3515	410.2714
48 hrs.	acetato	5295.5874	931.3928	3036256.25		
12 hrs.	isopropanol	188.9621	83.7819	470.4071	1.2600	2.9916
24 hrs.	isopropanol	149.9678	83.1412	318.0791		
		0.00.0	••••			
24 hrs.	isopropanol	149.9678	83.1412	318.0791	* 3.0786	2.4897
48 hrs.	isopropanol	461.6900	276.9370	937.3461		
12 hrs.	isopropanol	188.9621	83.7819	470.4071	2.4433	2.8868
48 hrs.	isopropanol	461.6900	276.9370	937.3461		
		Lophogorgi	a sp.			
24 hrs.	acetato	68285.2266	2549.1475	3.3434	4.8285	2127.7900
48 hrs.	acetato	14142.2314	1875.9768	38164728.0000	•	
12 hrs.	isopropanol	34.9644	21.8891	49.7699	• 3.3081	1.6369
24 hrs.	isopropanol	115.6649	92.9138	159	<u> </u>	1.0003
	юоргоралог	110.0040	02.0100	100		
24 hrs.	isopropanol	115.6649	92.9138	159	1.0891	1.4384
48 hrs.	isopropanol	125.9736	102.1843	166.1326		
12 hrs.	isopropanol	34.9644	21.8891	49.7699	<u>* 3.6029</u>	1.6144
48 hrs.	isopropanol	125.9736	102.1843	166.1326		
		Pacifigorgia	adamsii			
12 hrs.	acetato	313.1632	150.4167	484.9943	1.1325	2.1225
24 hrs.	acetato	354.6585	217.2366	543.7234		

Continuación Tabla 9.

acetato	354.6585	217.2366	543.7234	1.2412	1.9240
acetato	440.2063	277.7799	705.7873		
	Pacifigorgia	adamsii			
acetato	313.1632	150.4167	484.9943	1.4057	2.1317
acetato	440.2063	277.7799	705.7873		
	Muricea spi				
isopropanol	53.4153	47.1312	60.5373	<u>• 1.9728</u>	1.5484
isopropanol	105.3782	69.3113	160.2130		
isopropanol	105.3782	69.3113	160.2130	1.2028	1.6609
isopropanol	87.6106	65.9558	116.9041		
isopropanol	53.4153	47.1312	60.5373	<u>• 1.6402</u>	1.3667
isopropanol	87.6106	65.9558	116.9041		
	acetato acetato acetato isopropanol isopropanol isopropanol isopropanol	acetato 440.2063 <i>Pacifigorgia</i> acetato 313.1632 acetato 440.2063 <i>Muricea spl</i> isopropanol 53.4153 isopropanol 105.3782 isopropanol 105.3782 isopropanol 87.6106 isopropanol 53.4153	acetato 440.2063 277.7799 Pacifigorgia adamsii acetato 313.1632 150.4167 acetato 440.2063 277.7799 Muricea spi isopropanol 53.4153 47.1312 isopropanol 105.3782 69.3113 isopropanol 87.6106 65.9558 isopropanol 53.4153 47.1312	acetato 440.2063 277.7799 705.7873 Pacifigorgia adamsii acetato 313.1632 150.4167 484.9943 acetato 440.2063 277.7799 705.7873 Muricea spi isopropanol 53.4153 47.1312 60.5373 isopropanol 105.3782 69.3113 160.2130 isopropanol 87.6106 65.9558 116.9041 isopropanol 53.4153 47.1312 60.5373	acetato 440.2063 277.7799 705.7873 Pacifigorgia adamsii acetato 313.1632 150.4167 484.9943 1.4057 acetato 440.2063 277.7799 705.7873 Muricea spi isopropanol 53.4153 47.1312 60.5373 •1.9728 isopropanol 105.3782 69.3113 160.2130 1.2028 isopropanol 87.6106 65.9558 116.9041 isopropanol 53.4153 47.1312 60.5373 •1.6402

El análisis multifactorial MANOVA demostró nuevamente que los factores tiempo, especie y concentración son significativos (p<0.0000). También mostró que hay interacciones significativas entre, tiempo y extracto(especie), por lo que la toxicidad para cada extracto también varía en función al tiempo de exposición (p<0.0000), especie y concentración (p<0.0000), extracto y concentración (p<0.0000), concentración y tiempo y extracto este ultimo ligado a especie (p<0.0000) (Tabla 10).

Tabla 10. - Resultados de la MANOVA para el bioensayo porcentaje de eclosión de quistes de *Artemia* sp. Factores: especies (10 niveles), extractos (2 niveles, ligados a especie), concentración (6 niveles, ortogonal a especie y extracto) y tiempo (3 niveles, ortogonal a especies y concentración).

Factores	SS	DF	MS	F	' P	F versus
Especie	26182.8183	9	2909.2020	0.00	0.0000	NO TEST
Tiempo	89734.2952	2	44867.1476	317.16	0.0000	TiXex(esp)
Ex (esp)	30134.9574	10	3013.4957	21.30	0.0000	TiXex(esp)
Concentración	126811.6207	5	25362.3241	0.00	0.0000	NO TEST
EspX tiempo	6099.5910	18	338.8662	2.40	0.0307	TiXex(esp)
EspX con	20419.5218	45	453.7672	0.00	0.0000	NO TEST
tiXex(esp)	2829.3030	20	141.4651	3.27	0.0000	RES
TiXcon	3284.3999	10	328.4400	2.31	0.0175	conXtiXex(esp)
conXex(esp)	44165.5272	50	883.3105	6.20	0.0000	conXtiXex(esp)
EspXtiXcon	6302.7040	90	70.0300	0.49	0.0004	conXtiXex(esp)
ConXtiXex(esp)	14242.5022	100	142.4250	3.29	0.0000	RES
RESIDUOS	46789.1154	1080	43.3233			
TOTAL	416996.3561	1439				

Lo que nuevamente demuestra, como en el bioensayo anterior, que el tiempo de exposición es significativo e influye en los resultados. El análisis de las SNK nos dice que la toxicidad es diferente en cada uno de los tiempos de exposición ensayados y que la toxicidad se comienza a detectar a las 12 horas de exposición: porcentaje de eclosión a las 48 h (48.71, SD 0.70), 24 h (42.63, SD 0.69) y 12 h (29.27, SD 0.66).

7.6) Evaluación de la toxicidad con el bioensayo Supervivencia de nauplios 1 de *Artemia* sp.

En este bioensayo se sometieron poblaciones de nauplio 1 de *Artemia* sp. a los tóxicos para evaluar posteriormente la toxicidad como mortalidad con respecto a un control a las 12, 24 y 48 horas de exposición. En algunos casos debido a la naturaleza de los datos registrados no se pudieron utilizar por que en los controles hubo más animales muertos que en las concentraciones ensayadas.

El análisis de varianza de una vía, nos indicó que, para la esponja *Mycale parishii*, la toxicidad se detecto a partir de las 48 h de exposición, en el extracto de acetato de etilo desde la concentración de 5 μg/ml (p<0.05) (LC₅₀ de 13.86 μg/ml), siendo totalmente tóxico desde la concentración de 50 hasta la de 1000 μg/ml, donde hubo una inhibición de la supervivencia del 100%. Para el extracto con isopropanol no se registraron concentraciones tóxicas, sin embargo la LC₅₀ sólo se pudo calcular a las 12 h (LC₅₀ de 137.6 mg/ml) (Fig.15)

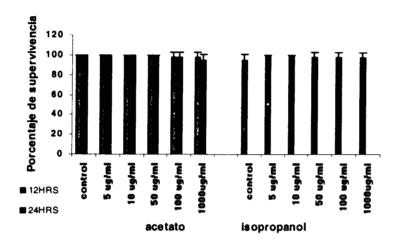
Para la esponja *Aplysina* sp. los extractos tanto de acetato de etilo como el de isopropanol no fueron significativamente tóxicos a ninguna hora (Fig.15).

En la figura 16 están representados los resultados de las esponjas *Hyatella intestinalis* y *Chondrosia chucalla*. Para la primera esponja encontramos que la concentración 1000 μg/ml para el extracto de acetato de etilo fue significativamente tóxica a las 24 h (p<0.01) (LC₅₀ 1.5 mg/ml), la fracción de isopropanol a 1000 μg/ml fue significativamente tóxica a las 12 y 24 h de

exposición (p<0.05). Para la segunda esponja en el extracto de isopropanol no hubo concentración significativamente tóxica a las 12, 24 y 48 h de haberse expuesto a los extractos, solo a las 48 horas en la concentración de 100 µg/ml hubo solo un 20% de supervivencia. El cálculo de las LC₅₀s no se pudieron realizar debido a que los datos se salieron de rango.

Con respecto a la esponja Dysidea sp., el análisis de varianza, nos indicó ausencia de toxicidad en las distintas concentraciones ensayadas de ambos extractos en los tres tiempos analizados (Fig. 17). Para la gorgonia Pacifigorgia adamsii, la fracción de acetato de etilo a las 12 h fue significativamente tóxica a partir de la concentración de 50 μg/ml (p<0.0001) (LC₅₀ de 12.7 μg/ml), a las 24 h fue tóxica a partir de 10 μ g/ml (p<0.05) (LC₅₀ de 34.5 μ g/ml), y a las 48 h a 5 μ g/ml fueron significativamente toxicas con respecto al control (p<0.0001) (LC₅₀ de 12.7 μg/ml). Para el extracto de isopropanol a las 12 h de exposición no hubo concentraciones significativamente tóxicas con respecto al control (LC50 de 269 mg/ml), pero a las 24 h la concentración de 1000 μg/ml fue significativamente tóxica con respecto al control (p<0.01) (LC50 de 632.6 µg/ml). A las 48 h de exposición al tóxico se registró toxicidad a partir de la concentración de 50 μg/ml (p<0.0001) (LC₅₀ de 23.3 μ g/ml) (Fig.17). El análisis de sus valores medios (LC₅₀) nos indica diferencias significativas entre ambos extractos a las 24 y 48 h de exposición, siendo más tóxico el extracto de acetato de etilo (Tablas 12,13). Además en el análisis de la comparación de las LC₅₀s para ambos extractos indicó que hubo diferencias significativas entre los 3 tiempos para el extracto de acetato de etilo y entre 12 y 28, 24 y 48 h para el de isopropanol (Tabla 14).

Para la gorgonia *Lophogorgia peruana*, la toxicidad comienza a detectarse en el extracto de acetato de etilo a partir de las 24 h de exposición, en la concentración de 1000 μg/ml (p<0.01) (LC₅₀ de 529.9 μg/ml). A las 48 h se registra toxicidad a partir de la concentración de 10 μg/ml pero debido a que los datos salieron de rango no fue posible hacer el calculo de su LC₅₀. Para la fracción isopropanólica, a las 12 h no hubo concentración significativamente tóxica con respecto al control (LC₅₀ 5.4 mg/ml), a las 24 h la concentración significativamente tóxica fue la de


1000 μg/ml (p<0.0001) (LC₅₀ de 252.6 μg/ml) (Fig.18). El análisis de sus valores medios (LC₅₀) nos indica que a las 24 h de exposición a los extractos fue significativamente diferente la toxicidad del extracto con acetato de etilo y la del de isopropanol, siendo más tóxico el extracto de isopropanol (Tabla 12). Además en el análisis de la comparación de la concentración media letal para acetato e isopropanol (12, 24 y 48 h) indicaron que hubo diferencias significativas (p<0.05) para acetato de etilo entre los tiempo12 y 24 h (Tabla 14).

Con respecto a la gorgonia *Lophogorgia rigida* la toxicidad se detecto a las 48 horas de exposición en las concentraciones de 5 y 1000 μg/ml (p<0.05). Respecto a la fracción con isopropanol la toxicidad se detectó a las 24 h en la concentración de 1000 μg/ml (p<0.01) (LC₅₀ de 2.3 mg/ml) (Fig.18).

El extracto con acetato de etilo de la gorgonia *Muricea* spl. no produjo toxicidad hasta 24 h, a 1000 μg/ml (p<0.05) (LC₅₀ de 83.5 mg/ml 24 h). A las 12 h, el extracto de isopropanol registra toxicidad a 100 (p<0.05) y 1000 μg/ml (p<0.01), pero debido a que los datos se salieron del rango no se pudo calcular su LC₅₀.(Fig.19). Con respecto a la gorgonia *Lophogorgia* sp. no hubo diferencias significativas paro ninguna concentración de ambos extractos (Fig.19).

Mediante el análisis estadístico de los valores medios se obtuvieron las especies en las que la toxicidad varió significativamente en función del extracto ensayado. Para la especie *Pacifigorgia adamsii* a las 12, 24 y 48 h el extracto más tóxico fue el acetato de etilo (Tabla 11, 12, 13). Para *Lophogorgia peruana* a las 24 h resulto ser más tóxico el extracto de isopropanol (Tabla 12). Además y el análisis de la comparación de la concentración media letal nos indicó que hubo diferencias significativas entre los tres tiempos (p<0.05) (Tabla 14).

Mycale parishii

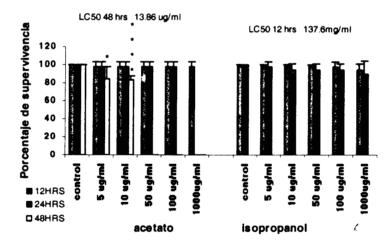
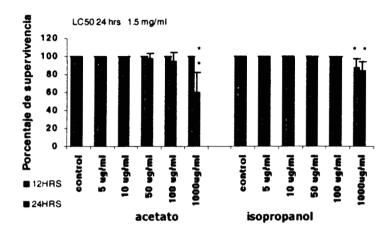



Figura 15. - Porcentaje medio de supervivencia de nauplios 1 de *Artemia* sp. sometidos a la presencia de los tóxicos, por un periodo de 12, 24, y 48 h. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Sobre la figura se indica la LC₅₀.

Hyatella intestinalis

Chondrosia chucalla

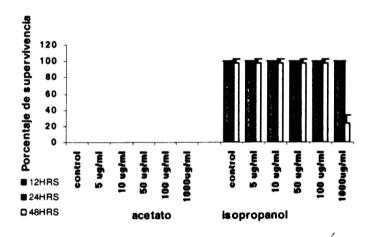
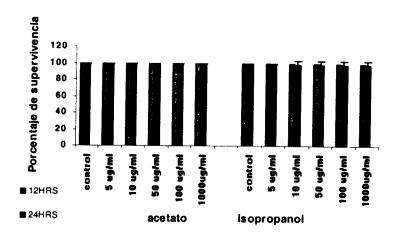



Figura 16. - Porcentaje medio de supervivencia de nauplios 1 de *Artemia* sp. sometidos a la presencia de los tóxicos, por un periodo de 12, 24, y 48 h. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: * p< 0.05, ** p< 0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la LC₅₀.

Pacifigorgia adamsli

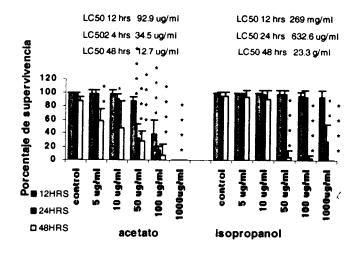
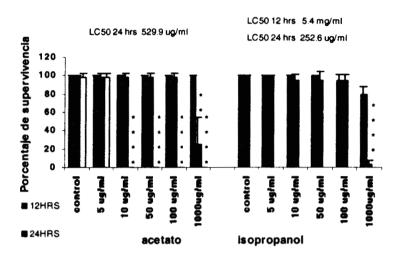



Figura 17. - Porcentaje medio de supervivencia de nauplios 1 de *Artemia* sp. sometidos a la presencia de los tóxicos, por un periodo de 12, 24, y 48 h. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: $^{\bullet}$ p< 0.05, ** p< 0.01, *** p<0.001, *** p<0.0001. Sobre la figura se indica la LC₅₀.

Lophogorgia peruana

Lophogorgia rigida

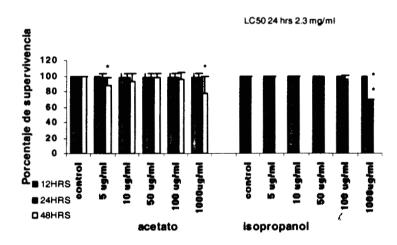
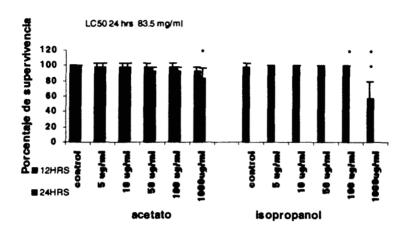



Figura 18. - Porcentaje medio de supervivencia de nauplios 1 de *Artemia* sp. sometidos a la presencia de los tóxicos, por un periodo de 12, 24, y 48 h. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: * p< 0.05, ** p< 0.01, ***p<0.001, ***p<0.001. Sobre la figura se indica la LC_{50} .

Muricea spi

Lophogorgia sp.

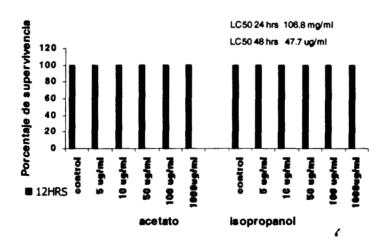


Figura 19. - Porcentaje medio de supervivencia de nauplios 1 de *Artemia* sp. sometidos a la presencia de los tóxicos, por un periodo de 12, 24, y 48 h. La barra de error representa la desviación estándar. Los asteriscos indican los tratamientos significativamente diferentes del control: * p< 0.05, **p<0.01, ***p<0.001, ***p<0.0001. Sobre la figura se indica la LC₅₀.

Tabla 11. - Concentración letal media (LC₅₀) para nauplios 1 de *Artemia* sp., a las 12 h de exposición al tóxico. Limites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

* representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀ comparación de LC₅₀). ♦ símbolo datos fuera de rango para él calculo de la LC₅₀

12 hrs.	LC ₅₀	L.I	L.S	comp	LC ₅₀
Esponjas	μg/ml Chondrosia c	μg/ml hucalia	<i>µ</i> g/ml	valor estadístico	valor critico 95%
◆acetato◆isopropanol					
Visopropario	Hyatella intes	tinalis			
◆ acetato	•				
	Mycale parish	nii			
◆acetato					
Isopropanol	137542.6090 Dysidea sp.	10900.1780	72198176768		
◆acetato					
4 - 4 -	Aplysina sp.				
+ acetato+ isopropanol					
Gorgonias					
◆ acetato	Lophogorgia	rigida			
isopropanol					
	Lophogorgia	peruana			
♦ acetato	5383.9678	2447.9990	24458.5700		
Isopropanol	Lophogorgia		24490.3700		
◆acetato◆isopropanol		.		C	
	Pacifigorgia a				
acetato	92.8550	78.4223	112.3623	2897.2341	6991.1436
Isopropanol	269023.0930 <i>Muricea spi</i>	17435.2960	3750540032.0000		
	mariooa api				

Tabla 12. - Concentración letal media (LC₅₀) para nauplios 1 de *Artemia* sp., a las 24 h de exposición a los tóxicos. Limites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

 $^{^{\}circ}$ representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀, comparación de LC₅₀). $^{\diamond}$ símbolo datos fuera de rango para él calculo de la LC₅₀.

24 hrs.	LC ₅₀	L.I	L.S	cor	npLC ₅₀
Esponjas	μg/ml Chondrosia d	μg/mi chucalia	<i>μ</i> g/ml	valor estadístico	valor critico 95%
acetatoisopropanol					
	Hyatelia intes	stin alis			
acetato	1496.9860	1003.3070	2664.8442		
• •	Mycale parisi	hii			
◆ acetato					
♦ isopropanol					
• •	Dysidea sp.				
◆acetato					
	Apiysina sp.				
◆ acetato					
♦ isopropanol					
Gorgonias	Lophogorgia	ríaida			
◆ acetato					
Isopropanol	2304.0647	1427.0010	5229.4731		
	Lophogorgia	•			
acetato	529.8751	406.2060	726.3250	<u>• 2.098</u>	1.4366
Isopropanol	252.5580	205.7790	316.9281	<i>t</i>	
◆ acetato	Lophogorgia	sp.		•	
Vicopi opalio.	Pacifigorgia a	adamsii			
acetato	34.4937	29.4806	40.3744	<u>• 18.339</u>	1.4788
Isopropanol	632.6140	395.3899	798.1896		
	Muricea spi				
acetato	83449.1640	9961.7216	16802900		
◆ isopropanol					

Tabla 13 - Concentración letal media (LC₅₀) para nauplios 1 de *Artemia* sp., a las 48 h de exposición a los tóxicos. Limites del intervalo de confianza al 95%, y valor del estadístico obtenido en la comparación de medias.

 $^{^{\}circ}$ representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀, comparación de LC₅₀). $^{\diamond}$ símbolo datos fuera de rango para él calculo de la LC₅₀.

48 hrs.	LC ₅₀	L.I	L.S	compLC ₅₀	
Esponjas	μg/ml Chondrosia d	μg/mi chucalla	<i>μ</i> g/ml	valor estadístico	valor critico 95%
acetatoisopropanol					
	Hyatella intes	stinalis			
◆ acetato					
Isopropanol	121.2504 <i>Mycale parisi</i>	66.2802 hii	221.8107		
acetato	13.7654	12.0692	15.9042		
♦ isopropanol					
	Dysidea sp.				
acetato	45.1797	30.4136	64.2396		
♦ isopropanol					
	Apiysina sp.				
Gorgonias					
	Lophogorgia	rigida			
Visopi opanoi	Lophogorgia	peruana			
	pgg	,			
♦ isopropanol					
	Lophogorgia	sp.		C	
◆ acetato					
Isopropanol	47.6603	40.9417	55.5194		
	Pacifigorgia a	9. 0763	16.8426	<u>• 1.8357</u>	1.4234
acetato Isopropanol	12.7033 23.3198	9.0763 19.4631	27.3311	<u> 1.0337</u>	1.7207
isopiopalioi	Muricea spl	19.7001	27.0011		
◆ acetato	municea spi				
♦isopropanol					

Tabla 14. - Comparación de la concentración letal media (compLC₅₀) para nauplios 1 de *Artemia* sp. a las 12, 24 y 48 h de exposición al tóxico. Se indica el valor del estadístico obtenido en la comparación de medias y el valor crítico al 95% para cada especie comparada.

 $^{^{\}circ}$ representa diferencias estadísticas (p< 0.05). (L.I, limite inferior; L.S, limite superior; compLC₅₀, comparación de LC₅₀).

		LC ₅₀	L.I	L.S	compLC ₅₀	
Gorgonia	e	μg/ml ∘	<i>µ</i> g/ml	μ g/ml	valor estadístico	valor critico 95%
Gorgonia	3					
		Lophogorgia	peruana			
12 hrs.	isopropanol	5383.9678	2447.9990	24458.5700	<u>* 21.3177</u>	3.4359
24 hrs.	isopropanol	252.5580	205.7790	316.9281		
		Pacifigorgia a	adamsii			
12 hrs.	acetato	92.8550	78.4223	112.3623	<u>* 2.6919</u>	1.2999
24 hrs.	acetato	34.4937	29.4806	40.3744		
12 hrs.	acetato	92.8550	78.4223	112.3623	<u>* 7.3095</u>	1.4304
48 hrs.	acetato	12.7033	9.0763	16.8426		
24 hrs.	acetato	34.4937	29.4806	40.3744	<u>* 2.7153</u>	1.4150
48 hrs.	acetato	12.7033	9.0763	16.8426		
481		000000 0000	17405 0000	37505400		7000 1465
12 hrs.	isopropanol	269023.0930	17435.2960	32	425.2563	7029.1465
24 hrs.	isopropanol	632.6140	395.3899	798.1896		
					•	
12 hrs.	isopropanol	269023.0930	17435.2960	3750540032	111536.2529	6989.7544
48 hrs.	isopropanol	23.3198	19.4631	27.3311		-
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.500.000.101				(
24 hrs.	isopropanol	632.6140	395.3899	798.1896	<u>* 27.1278</u>	1.4866
48 hrs.	isopropanol	23.3198	19.4631	27.3311		

El análisis de la MANOVA indicó que los factores importantes y responsables en mayor medida de las diferencias significativas entre los tratamientos fueron, individualmente, especie (p<0.0000), tiempo (p<0.0000) y concentración (p<0.0000). Además existen interacciones entre tiempo y extracto(especie) (p<0.0000), especie y concentración (p<0.0000), tiempo y concentración (p<0.0000) y concentración, tiempo y extracto(especie) (p<0.0000) (Tabla 15).

Tabla 15. - Resultados de la MANOVA para el bioensayo porcentaje de supervivencia de nauplios 1 de *Artemia* sp. Factores: especies (10 niveles), extractos (2 niveles, ligados a especie), concentración (6 niveles, ortogonal a especie y extracto) y tiempo (3 niveles ortogonales a especies y concentración).

Factores	SS	DF	MS	F	Р	F versus
Especie	75689.4956	9	8409.9440	0.00	0.0000	NO TEST
Tiempo	273782.7183	2	136891.3591	67.22	0.0000	tiXex(esp)
Ex(esp)	34939.0242	10	3493.9024	1.72	0.1460	tiXex(esp)
Concentración	149939.2785	5	29987.8557	0.00	0.0000	NO TEST
EspXtiempo	44061.8855	18	2447.8825	1.20	0.3432	tiXex(esp)
EspXcon	93211.2068	45	2071.3602	0.00	0.0000	NO TEST
tiXex(esp)	40728.7976	20	2036.4399	25.89	0.0000	RES
TiXcon	38841.5916	10	3884.1592	5.85	0.0000	conXtiXex(esp)
conXex(esp)	46644.7726	50	932.8955	1.40	0.0762	conXtiXex(esp)
EspXtiXcon	59427.4680	90	660.3052	0.99	0.4893	conXtiXex(esp)
conXtiXex(esp)	66445.0473	100	664.4505	8.45	0.0000	RES
RESIDUOS	84956.8809	1080	78.6638			
TOTAL	1008668.1667	1439				

,

Se vio que la toxicidad varía con la concentración, dependiendo de la especie, pero lo más significativo de estas interacciones son las derivadas del factor tiempo. Los análisis de las SNK nos indica que existen diferencias significativas de la toxicidad con respecto al tiempo, siendo la media de supervivencia más alta a las 12 h (86.5 SD 0.52), luego para las 24 h (80.18 SD 0.94) y finalmente para las 48 h (54.6 SD 1.42), 12 h difiere de 24 h (95%), 12 h difiere de 48 h (99%).

7.7) Resultados de las pruebas antineoplásicas realizadas sobre tres líneas celulares específicas.

Los datos antineoplásicos fueron obtenidos y cedidos por la co-directora de tesis la Dra. Ma. Dolores García Grávalos de la empresa Pharma Mar, España.

Tabla 16. - Comparación de la concentración media letal, de inhibición en bioensayos con Echinometra vanbrunti y Artemia sp. y de pruebas antineoplásicas sobre tres líneas celulares (IC_{50} s y LC_{50} s ($\mu g/ml$)). A (Acetato de etilo), B (isopropanol) $^{\circ}$ no hubo datos

• 12 h, • 24 h, • 48 h de exposición al tóxico.

Especie	Linfoma de ratón P388 (IC50 µg/ml)	Carcinoma de pulmón humano A549 (IC50 μg/mi)	Carcinoma de colón humano HT29 (IC50 μg/ml)	Ensayo división celular en Echinometra vanbrunti (IC50 µg/mi)	Ensayo viabilidad de ovocitos Echinometra vanbrunti (IC50 μg/ml)	Supervivencia de nauplios 1 de <i>Artemia sp.</i> (LC50 μg/ml)	Capacidad de eclosión de embriones de <i>Artemia sp.</i> (LC50 μg/ml)
Aplysina sp.	A,B>10	A = 5, B>10	A = 1, B>10	A-56 B	B = 115.7		*A=1087.4,B=48.3 *B=154.1 *B=208.6
Lophogorgia rigida				A =9.8	A =1519.8	⁸ B=2304.1	*A=213.6, B=42.3 *A= 1834.2 *A=16712 , B=223.4
Pacifigorgia adamsii	A>10	A>10	A>10	B = 14.75	A = 115.6	*A=92.8 , B=269023 *A=34.5 , B=632.6 *A=12.7 , B=23.3	*A=313.2 *A=354.7, B=159.5 *A=440.2
Mycale parishii	A,B>10	A,B>10	A,B>10	A =3.9 ,B = 2.9	A =176.7 ,B = 17.3	*B=1375472.6 *A=13.8	*A=3625.9, B=99.3 *A=10660.9, B=127 *A=305732.5 ,B=136.7
Muricea spl.	A>10	A>10	A>10	A =1.5 ,B = 11.8	A =1562.9 ,B =289	⁸ A=83449.2	*A=9470.8, B=53.4 *B=105.4 *B=87.6
Chondrosia chucalla	A>10	A>10	A>10	A =18.4		4	*A=46.2 , B=194.5 *B=182664.4 *B=584955.4
Hyatella intestinalis	>10	>10	>10	A =2 ,B = 2	A =10264.5	⁸ A=1497 ⁹ B=121.2	*A=23.9, B=60.5 *A=10417.4, B=199 *A=1727.5, B=448
Lophogorgia peruana	A = 0.1	A = 0.1	A = 0.1	A =9.7 ,B =72	B = 158.0	*B=5384 *A=529.9 ,B=252.5	*A=720.3, B=188.9 *A=160.3, B=150 *A=14142.2, B=126
Dysidea sp.	>10	>10	>10	A=0.9 ,B= 1	A =12.4 ,B =43020	⁹ A=45.2	*A=59.3 *A=171.9 *A=6156.8, B=183.2
Lophogorgia sp.	>10	>10	>10	A=0.25 ,B=1.1	A =51.2 ,B =380.8	ºB=47.7	*B=34.9 *A=68285.3, B=116 *A=9.7, B=72

VIII. DISCUSIÓN

VIII. DISCUSIÓN

225714

8.1) Evaluación de la toxicidad utilizando erizo de mar Echinometra vanbrunti.

Los resultados obtenidos mostraron: (1) todas las especies en ambos extractos fueron toxicas en el bioensayo de división celular, (2) en el bioensayo de fertilización cada especie mostró toxicidad en un extracto diferente, (3) el mismo extracto puede presentar diversas actividades por ejemplo en el caso de *Aplysina* sp. el extracto A (polar) presentó actividad tóxica en el bioensayo de división celular y en fertilización a partir de 5 µg/ml. Es importante mencionar que "extracto" no es lo mismo que compuesto, pero los compuestos pueden estar en diferentes extractos.

Al momento de evaluar los factores que determinaron la variabilidad de la toxicidad de los extractos en ambos bioensayos con un nivel de significancia (p<0.00001) fueron: extracto, concentración, y la interacción concentración-extracto(especie), observándose claramente que el efecto del tipo de extracto cambió significativamente con la concentración ensayada. La comparación estadística de las IC50s y LC50s demostró que existían diferencias significativas con respecto a la polaridad de los extractos, indicando que el extracto de acetato de etilo fue en general más tóxico. Es importante mencionar que ninguna especie fue realmente mucho mas tóxica que las demás.

Al comparar la sensibilidad de los dos bioensayos encontramos que el método más sensible es el que evalúa la capacidad de los extractos de inhibir la división celular de ovocitos de erizo de mar, ya que a una concentración igual o menor de 5 μg/ml se detectó toxicidad en todas las especies y en ambos extractos (Tabla 17), una comparación de la sensibilidad de bioensayos que duraban una hora y otros de varias horas han demostrado que este tipo de ensayos tienen una buena sensibilidad (Dinnel, 1995).

Por otra parte, el hecho de que se obtuvieran diferencias significativas en relación a la polaridad del extracto, indicó que el procedimiento metodológico jugó un papel importante en la evaluación de los mismos, siendo adecuado realizar diferentes extracciones (en cuanto a polaridad) para obtener un rango de mayor número de sustancias. También es importante realizar ensayos utilizando una concentración menor de 5 ug/ml por ejemplo 1ug/ml y poder ampliar el rango de sensibilidad de los bioensayos y así comparar los bioensayos desarrollados con los hechos en líneas celulares específicas.

El erizo de mar ha sido empleado fundamentalmente para la detección de toxicidad de vertidos urbanos con el propósito de monitoreo ambiental (Kobayashi, 1969; 1984,1995; Hose, 1985; Pagano et al., 1986; Dinnel et al., 1987; 1988; Fusetani et al., 1987; Trieff et al., 1995; Woodworth et al., 1999) y para evaluar la citotoxicidad sobre material biológico en crecimiento continuo (Martín y Uriz, 1993; Selem et al., 2000).

Los resultados de este trabajo indicaron que este bioensayo es útil para evaluar la toxicidad de extractos de organismos marinos en este caso gorgonias y esponjas ya que se puede observar el efecto de estos en las primeras divisiones celulares después de la fertilización, y ver el cambio a nivel de división celular en un tiempo determinado (5 h en nuestro caso), estudios previos indicaron que el tiempo de observación puede ser prolongado de 4-6 horas, además se sabe que prácticamente todas las especies de erizo de mar pueden ser usadas para pruebas de "screening" farmacológico, ya que la técnica y equipo para manejar a los erizos adultos y para obtener embriones y larvas es mínimo, bien conocido y barato (Buznikov, 1984, 1990; Buznikov et al., 1996, 1997).

Las ventajas que tiene el utilizar gametos, embriones y larvas de erizo de mar es la rapidez, bajo costo del equipo y la técnica es muy sencilla además. Buznikov et al. (1997) encontraron que este ensayo es confiable y valido en pruebas preliminares de toxicidad en varias sustancias y por su buena sensibilidad ante diferentes sustancias interesantes de investigar. Los resultados obtenidos en algunos casos pudieran ser aplicables posteriormente en mamíferos, e inclusive

en humanos. Los resultados de los ensayos con erizo de mar han sido considerados un resultado preliminar para encontrar sustancias con potencial farmacológico, o de acción citotóxica desde los años sesenta, por otra parte se ha usado el modelo de erizo de mar para estudiar de manera detallada a nivel bioquímico, citofisiológico los mecanismos de acción de algunas drogas.

Estos bioensayos además pueden ser usados en farmacología y en la evaluación de la toxicidad de compuestos específicos como se ha reportado por Neiheisel y Young, 1992; Huffman, 1992; Burgess et al., 1993; Cekolin et al., 1993, Morell y Adams, 1993; Nipper et al., 1993; Gaete et al., 1996; Warnau et al., 1996, Mwatibo y Green, 1997 y por Sibley et al., 1993; Krause, 1994; Zúñiga et al., 1995; Riveros et al., 1996 a, b, Larrain et al 1999 para muestras de efluentes de ríos, industrias pesqueras, costas, etc., donde los ensayos son de corta duración y son sensibles a varios tóxicos y requieren de pequeñas cantidades de agua para realizar los análisis.

Al realizar la comparación de los datos obtenidos en los bioensayos con erizo de mar, con las pruebas antineoplásicas realizadas por el equipo de Pharma Mar, encontramos que el ensayo de inhibición de la división celular podría servir como prueba preliminar de detección de esta actividad, ya que en algunos casos concretos como el de la esponja *Aplysina* sp. los resultados obtenidos con este bioensayo, así como en las pruebas antineoplásicas resultaron ser parecidos (Tabla 16). Además, existen antecedentes de que este bioensayo sirve como "screening" de compuestos teratogénicos como consecuencias de contaminación ambiental (Congiu et al., 1984; Pagano y Trieff, 1992; Grajilet et al., 1993), y también para detectar respuestas a mycotoxinas (Morrel y Adams, 1993), a toxinas aisladas de algas marinas (Pesando et al., 1991, 1996) esponjas (Fusetani et al, 1983; Otha et al., 1996), de estrellas de mar (Fusetani, 1987) tunicados (Pesando et al., 1995), y anémonas (Malpezzi y Freitas, 1990).

8.2) Evaluación de la toxicidad utilizando Artemia sp.

En el presente trabajo se obtuvo que cada especie fue tóxica en un extracto diferente en ambos bioensayos, para el bioensayo de embriones de *Artemia* sp., conforme aumentaba el tiempo de exposición al tóxico en todos los casos ensayados la IC₅₀ era más alta, y en ambos bioensayos la toxicidad se presento en extractos diferentes.

Los factores que determinaron la variabilidad de la toxicidad de los extractos en ambos bioensayos con un nivel de significancia p<0.00001 fueron: especie, tiempo, extracto(especie), concentración, y la interacción especie—concentración, tiempo-extracto(especie), concentración-extracto (especie) y concentración-tiempo-extracto(especie), observándose claramente que el efecto del tipo de extracto cambió significativamente con la concentración ensayada. En el caso del bioensayo capacidad de eclosión de embriones la interacción concentración-extracto(especie) no fue significativa, mientras que en el bioensayo supervivencia de nauplios 1 no fue significativa la interacción tiempo-concentración. La comparación estadística de las IC50s y LC50s demostró que existían diferencias significativas con respecto a la polaridad de los extractos, indicando que el extracto de acetato de etilo fue en general más tóxico. Es importante mencionar que ninguna especie fue realmente mucho mas tóxica que las demás.

Los análisis indicaron que la toxicidad probablemente varió en función al tiempo de exposición, y además, hubo una gran diferencia entre los dos bioensayos atendiendo a este factor. Utilizando el bioensayo de embriones, la toxicidad, en la mayoría de las especies, se comienza a detectar generalmente a las 12 h de exposición al extracto debido a la sensibilidad del bioensayo. Sin embargo, con el bioensayo de supervivencia de nauplios la toxicidad se detecta a partir de diferentes tiempos de exposición (según la especie), aunque generalmente se requiere de 48 h de exposición para inducir toxicidad.

Al comparar la sensibilidad de los bioensayos, capacidad de eclosión de embriones y supervivencia de nauplios 1, encontramos que el método más sensible fue el que evalúo la capacidad de los extractos para inhibir la eclosión de embriones de *Artemia* sp. ya que a una concentración igual o mayor 10 μug/ml

detectó toxicidad (Tabla 17). Existen estudios en los cuales se evaluó la sensibilidad de embriones descapsulados y nauplios (Migliore et al. 1997), donde no hubo diferencias entre ambos sistemas probados, siendo un sistema conveniente para probar drogas contaminantes solubles en agua. Sin embargo otros estudios demostraron que hay una buena relación entre la sensibilidad al compuesto y el grado de desarrollo (Sorgeloos et al., 1978), y por esa razón se prefiere utilizar los estadíos iniciales ya que son los más convenientes para detectar toxicidad (Sleet y Brendel, 1985).

Por otra parte Baharona y Sánchez-Fortún (1994, 1996) indican que *Artemia* salina a las 48 h de haber descapsulado, son más sensible a algunos solventes orgánicos y pesticidas, que a 72 y 168 h

En el presente trabajo se observó que es más adecuado exponer embriones descapsulados durante 12 h, que nauplios 1. Ya que mantener el bioensayo de nauplio 1 en algunos casos fue difícil, debido a la mortalidad en los controles que en algunos casos fue mayor en los controles que en los tratamientos, y conforme transcurría el tiempo se heterogeneizaba más la población, encontrando estadíos de nauplio 2 y 3.

En comparación con otros organismos utilizados en toxicología acuática, *Artemia salina* presenta una sensibilidad variable, dependiendo del compuesto y de la especie comparada (Barahona y Sánchez-Fortún, 1996). En el presente trabajo se encontró que algunas especies probadas se detectando toxicidad a partir de 5 µg/ml y en otros casos no detectó toxicidad a ninguna concentración.

Resulta interesante hacer notar que los bioensayos con *Artemia* sp. fueron desarrollados como respuesta a la necesidad de tener ensayos con los cuales se pudiera detectar algún tipo de actividad farmacológica a más bajo costo (Meyer et al., 1982). El uso de nauplios de *Artemia* sp. para ensayos de toxicidad general fue propuesto inicialmente por Michael et al, (1956), aunque formalmente fue desarrollado por Vanhaecke et al., (1981). Rápidamente se demostró su valor en pruebas preliminares (Kersetter y Schaffer, 1983). Posteriormente Sleet y Brendel (1983) mejoraron el método y estandarizaron el proceso.

Además Meyer et al., (1982) consideran el bioensayo con nauplios un método fácil de pruebas preliminares antitumoral para extractos de plantas terrestres, ya que los resultados parecen correlacionarse con los resultados obtenidos en ensayos antitumorales sobre líneas celulares humanas (9KB y 9PS), en este trabajo no se encontró relación entre los datos obtenido en las tres líneas celulares ensayadas por la codirectora de la tesis y los resultados de los extractos de organismos marinos obtenidos con *Artemia* sp. (Tabla 16).

Se sabe que el bioensayo con *Artemia* no ha sido lo suficientemente contrastado con organismos marinos, compuestos con diferentes grados de solubilidad en agua (Migliore et al., 1997) y parece poco eficaz para detectar citotoxicidad de productos a muy baja concentración (Caprioli et al., 1992, datos no publicados).

Por otra parte, el haber obtenido diferencias significativas en relación a la polaridad del extracto, indica que el procedimiento metodológico juega un papel importante en la evaluación de los mismos, siendo adecuado realizar diferentes extracciones (en cuanto a polaridad) para obtener un mayor número de sustancias, y de diferentes solubilidades ya que en nuestros bioensayos el no haber tenido ese rango pudo ser la causa de que no se detectó toxicidad sin que eso signifique que los extractos no son tóxicos, ya que en ambos bioensayos la toxicidad se detecto en extractos diferentes por ejemplo en el bioensayo de capacidad de eclosión de embriones el extracto apolar (isopropanol) en general fue más toxico, lo que no sucedió en el bioensayo de supervivencia de nauplios 1. También es importante el realizar ensayos a menores concentraciones de 5 ug/ml para ampliar el rango de sensibilidad de estos.

En los pasados 30 años, los nauplios de *Artemia* han sido empleados en ensayos de numerosas sustancias (Michael et al., 1956; Persone y Wells, 1987) y también se han utilizado en sistemas de prueba con teratógenos (Acey y Tomilson, 1988; Kersetterr y Schaeffer, 1983; Kuwarabara et al., 1980; Sleet y Brendel, 1983, 1985), en pruebas ecotoxicológicas (Persoone y Van Haecke, 1981; Persoone y Well, 1987; Sorgeloos et al., 1978) por lo que es necesario

seguir explorando y validando esta pruebas con organismos marinos

Siendo importante destacar, que debido a los antecedentes bibliográficos y a los resultados obtenidos de los cuatro bioensayos evaluados en este estudio, el bioensayo de inhibición de la división celular durante el desarrollo embrionario en *Echinometra vanbrunti* podría ser utilizado como prueba preliminar para detectar y evaluar la toxicidad en extractos procedentes de organismos marinos que pudieran tener potencial farmacológico o de acción citotóxica, pero también podría ser usado como ensayo en ecotoxicología ambiental.

Tabla 17. – Comparación de la concentración a la que se comienza a detectar toxicidad (μg/ml) en los bioensayos con Echinometra vanbrunti y Artemia sp. y de pruebas antineoplásicas sobre tres líneas celulares A (Acetato de etilo), B (isopropanol) (* no hubo datos) (** no hubo suficiente material para el extracto)

Especie	Extracto	Linforna de ratón P388	Carcinoma de pulmón humano A549	Carcinoma de colón humano	Erizo división (5 h)	Erizo fertilización (30)	Artemia embriones (12 h)	Artemia embriones (24 h)	Artemia embriones (48 h) (LC50	Artemia naupilo1 (12 h)	Artemia nauplio1 (24 h)	Artemia nauplio1 (48 h) (LC50
		(mg/ml)	(jm/gri)	(lm/ml)	(Jm/ørl)	(IC50 µg/ml)	(LCS)	(LC30	(juy/bri	(LCSU		mo/ml)
Aplysina sp.	∢	×10	5	1	5	5	1000	9	2	>1000	×1000	*
	8	>10	>10	>10	2	100	1000	1000	1000	>1000	•	+
Lophogorgia rigida	∢	*	*	#	5	1000	1000	>1000	>1000	>1000	>1000	5
	8	**	**	**	< 5	20	1000	1000	1000	>1000	1000	*
Pacifigorgia adamsii	۷	>10	>10	>10	5	50	100	1000	100	20	10	5
	8	**	##	**	5	100	10	10	10	>1000	1000	22
Mycale parishii	< <	>10	>10	>10	5	50		100	100	>1000	×1000	5
	æ	>10	>10	>10	5	50	100	10	90	>1000	^1000	
Muricea spl.	∢	>10	>10	>10	5	1000	1000	>1000	>1000	>1000	1000	*
	8	:	* *	**	5	1000	100	100	920	100	*	*
Chondrosia chucalla	∢	>10	>10	>10	5	1000	99	>1000	×1000	•	*	•
	60	:	*	**	5	>1000	92	100	1000	>1000	^1000	
Hyatella intestinalis	∢	>10	>10	>10	5	>1000	09	20	90	>1000	1000	*
	•	:	ŗŧ.	**	5	1000	1000	1000	1000	1000	1000	•
Lophogorgia peruana	∢	0.1	0.1	0.1	5	1000	1000	1000	1000	>1000	1000	10
	•	:	*	*	10	1000	09	100	1000	>1000	1000	*
Dysidea sp.	∢	^10	>10	>10	2	5	50	100	100	>1000	×1000	
	•	*	:	:	5	1000	20	20	*	>1000	>1000	*
Lophogorgia sp.	<	×10	>10	>10	5	20	>1000	100	100	>1000	•	•
	•	:	*	:	2	1000	920	09	95	>1000	٠	•

Tabla 18. – Comparación de la concentración media letal y de inhibición (IC₅₀s y LC₅₀s (μg/ml)), en bioensayos con *Echinometra vanbrunti* y *Artemia* sp.

A (Acetato de etilo), B (isopropanol) * no hubo datos

Especie	Extracto	Erizo división (5 h)	Erizo fertilización (30')	Artemia embriones (12 h)	Artemia embriones (24 h)	Artemia embriones (48 h)	Artemia nauplio1 (12 h)	Artemia nauplio1 (24 h)	Artemia nauplio1 (48 h)
Aplysina sp.	٧	2.60	*	1087.40	•	٠	•	•	•
	8	19.71	115.76	48.27	154.08	208.57	•	•	*
Lophogorgia rigida	٧	9.76	1519.85	213.60	1834.17	16712	4	*	•
	8	•	•	42.31	•	223.38	•	2304.06	•
Pacifigorgia adamsii	٧	•	115.60	313.16	354.66	440.21	92.86	34.49	12.70
	8	14.75	•	•	159.48	•	269023.09	632.61	23.32
Mycale parishii	٧	3.94	176.73	3625.86	10660.88	305732.47		•	13.77
	8	2.97	17.29	99.32	127.42	136.72	137542.61	*	•
Muricea spl.	٧	1.47	1562.90	9470.78	•	*	•	83449.16	
	В	11.79	288.96	53.41	105.38	19.78	٠	•	*
Chondrosia chucalla	٧	18.39	•	46.16	•	•	•	*	٠
	В	٠	•	194.52	182664.39	584955.37		•	*
Hyatella intestinalis	٧	2.04	10264.48	23.88	10417.37	1727.55	•	1496.99	•
	В	2.05	•	60.51	198.94	447.78	•	•	121.25
Lophogorgia peruana	٧	89.6	•	720.34	160.30	5295.59	•	529.88	٠
	В	22	158	188.96	149.97	461.69	5383.97	252.56	•
Dysidea sp.	٧	0.94	12.38	59.30	171.86	6156.84	*	•	45.18
	В	1	43020.84	•	•	183.26	•	•	•
Lophogorgia sp.	٨	0.25	51.24	•	68285.23	14142.23	•	•	*
	В	1.14	380.80	34.96	115.66	125.97	٠	108811.7	47.66

IX. CONCLUSIONES

IX. CONCLUSIONES

- 1. Los factores que provocaron la variabilidad de la toxicidad en los bioensayos con erizo de mar fueron: extracto (especie) y concentración.
- En el bioensayo Inhibición de la división celular, se detectó toxicidad en las 10 especies ensayadas, de las cuales, 7 mostraron toxicidad en la fracción de acetato de etilo.
- El bioensayo Inhibición de la división celular, generalmente detectó toxicidad a partir de la concentración de 5 μg/ml.
- 4. Para el bioensayo Viabilidad ovocítica, las 10 especies fueron tóxicas, de las cuales 6 mostraron toxicidad en la fracción de isopropanol.
- El bioensayo de fertilización, por su corta duración, podría ser un método adecuado para detectar sustancias cuya toxicidad sea muy alta.
- 6. El bioensayo de división celular debido a su rapidez, confiabilidad, bajo costo y sensibilidad, podría ser utilizado como prueba preliminar de toxicidad en extractos procedentes de organismos marinos que pudieran tener potencial farmacológico o acción citotóxica.
- 7. Mientras que en los bioensayos con Artemia sp. la toxicidad varió de acuerdo a los factores: especie, tiempo de exposición y concentración, en el caso del bioensayo de eclosión de quistes la toxicidad dependió del factor extracto (especie).
- 8. En el bioensayo capacidad de eclosión de *Antemia* sp. se detectó toxicidad en las 10 especies ensayadas en la fracción de isopropanol.
- En el bioensayo supervivencia de nauplios 1 de Artemia sp. solo 6 especies, 2 esponjas y 4 gorgonias mostraron toxicidad siendo más tóxica la fracción de acetato de etilo.
- 10. En el bioensayo capacidad de eclosión de Artemia sp. indicó que el tiempo adecuado para realizar el bioensayo es de 12 h, y los resultados obtenidos sugieren que el bioensayo podría ser un método efectivo que

- proporcione pruebas rápidas, eficaces y económicas para evaluar toxicidad en extractos procedentes de organismos marinos.
- 11. En el caso de que se utilizara el bioensayo supervivencia de nauplios 1 de Artemia sp. para detectar toxicidad en compuestos orgánicos marinos, parece que el tiempo adecuado estaría por en 48 h o más debido a la sensibilidad del ensayo.
- 12. Una ventaja de los bioensayos con Artemia sp. sobre los realizados utilizando el erizo de mar es que se pueden llevar a acabo en cualquier época del año ya que los requerimientos de infraestructura son más bajos.
- 13. De forma general los resultados indicaron que es importante realizar más de un fraccionamiento, para obtener compuestos con diferente polaridad y poder evaluar su toxicidad, ya que ésta asociada en algunos casos al extracto polar y en otras al menos polar.

X. REFERENCIAS

X. REFERENCIAS

- Acey, R. A y D. W. Tomilson. 1988. Artemia salina as a model system for assessing the effects of xenobiotic on embryonic development. FASEB Journal. 2(6), 8463.
- **Amadame, P. y L. Chevolot. 1982.** Antimicrobial activities of marine sponges French Polynesia and Brittany. *Marine Biology.* 70:223-228.
- Amat, F. 1985. Utilización de *Artemia* en acuicultura. Informes técnicos del Instituto de Investigaciones Pesqueras. España. 128-129
- **Barahona, M. V. y S. Sánchez-Fortún. 1996.** Comparative sensitivity of three age classes of *Artemia salina* larvae to several phenolic compounds. Bulletin Environmental Contamination Toxicology, 56: 271-278.
- Bakus, G., S. Schulte, J. Wright, G. Green y P. Gómez. 1985. Antibiosis and antifouling in marine sponges: laboratory versus field studies. *3d. International. Sponge Conference*. 102-108.
- **Becerro, M. A., M. J. Uriz, y X. Turon. 1995.** Measuring toxicity in marine environments: critical appraisal of three commonly used methods. *Experientia*. 51: 414-418.
- Becerro, M. A., X. Turon y M. J. Uriz. 1997. Multiple functions for secondary metabolites in encrusting marine invertebrates. *Journal of Chemical Ecology*. 23(6): 15271547.
- Bergeron, R. J., P. F. Jr. Cavanaugh, S. J. Kline, R. G. Jr. Hughes, G. T. Elliott, G. T y C. W. Porter. 1984. Antineoplastic and antiherpetic activity of spermidine catecholamide irons chelators. *Biochemical and Biophisical Research Communications*, 121(3): 848-854.
- **Bergquist, P. R. y J. J. Bedford. 1978.** The incidence of antibacterial activity in marine Demospongiae, systematic and geographic considerations. *Marine Biology.* 46:215-221.
- Betancourt-Lozano, M., F. González-Farias, B. González Acosta, A. García-Gasca y J. R. Bastida Zavala. 1998. Variation of antimicrobial activity of the sponge *Aplysina fistularis* (Pallas, 1766) and its relation to associated fauna. *Journal of Experimental Marine Biology and Ecology*. 223(1): 1-18.
- Blunt, J. W., H. G. Munro, C. N. Battershill, B. R. Copp, J. D. McCombs, N. B. Perry, M. Prinsep y A. M. Thompson. 1990. From the antarctic to the antipodes; 45° of marine chemistry. *New Journal of Chemistry*. 14: 761-775.
- Burgess, M. R., K. A. Schweitzer, R. A. McKinney, D. K. Phelps. 1993. Contaminated marine sediment: Water column and interstitial toxic effects. *Environmental Toxicology and Chemistry*. 12:127-138.
- **Buznikov, G. A. 1984.** The action or neurotransmitters and related substances on early embryogenesis. In: Papp J.G editor. *Developmental Pharmacology*. 23-59.

- **Buznikov; G. A. 1990.** Neurotransmitters in embryogenesis. Churchill Horwood Academic Publishers.pp526.
- Buznikov, G. A., L. A. Malchenko, N. D. Zvezdina, S. Jovanovié, L. N, Markova, I. Milosévic, L. A, Nikitina, L. Lazarevié, Z. Redzic, L. Rogaé y Lj. Rakié. 1996. Effects of thiazofurin on developmental of sea urchin embryos and larvae. Ontogenez (Russian Journal Developmental Biology) 27: 62-69.
- Buznikov, G. A., M. Jokanovic, N. Kovacevic y L. J. Rakic. 1997. Sea urchin embryos and larvae as biosensores for screening and detailed study of pharmacologically active substances. *Archives Toxicological Kinetic Xenobiotic Metabolic*. 5(4):393-400.
- Caprioli, V., G. Cimino, A. De Giulio, A. Madajo, G. Scognamiglio y E. Trivellone. 1992. Selected biological activities of saraines. *Comparative Biochemistry and Physiology*. 103(1): 293-296.
- Carballo, J. L., S. A. Naranjo, A. Hernández-Zanuy y B. Kukurtzü. 1997. Estudio de la población de *Ecteinascidia turbinata* Herdman 1880 (Ascidiacea: Perophoridae) en la isla de Formentera (Mar Mediterráneo. España): Distribución, densidad y crecimiento. *Ciencias del Mar UAS*. 15: 7-15.
- Carballo, J. L., A. Hernández-Zanuy, S. Naranjo, B. Kukurtzü y A. García-Cagide. 1999. Recovery of *Ecteinascidia turbinata* Herman 1880 (Ascidiacea: Perophoridae) populations after different levels of harvesting on a sustainable basis. *Bulletin of Marine Sciences*. 65(3): 755-760.
- Carballo, J. L. 2000. Larval ecology of an ascidian tropical population in a mediterranean enclosed ecosytem. *Marine Ecology Progress Series*. 195:159-167.
- Carballo J. L, S. Naranjo, B. Kukurtzü, F. De La Calle, A. Hernández-Zanuy. 2000. Production of *Ecteinascidia turbinata* (Ascidiacea: Perophoridae) for obtaining anticancer compounds. *Journal of the World Aquaculture Society* 31(4): 481-490.
- Carballo, J. L. 2000b. Distribución de Ecteinascidia turbinata (Ascidiacea: Perophoridae) en los manglares del la Península de Yucatán (México). Revista de Biología Tropical 48(2):
- Carballo, J. L. 2001. Los organismos marinos y las moléculas bioactivas. Perspectiva actual. En. El mar como fuente de moléculas bioactivas. A.J. Laborda y Secretariado de Publicaciones Universidad de León (Eds), león, España.
- Cárdenas, A. N., I.E. Soria, D.Waumann y J. A. Fernández. 1999. Descripción de la actividad de organismos bentónicos (esponjas y tunicados marinos) del Golfo de California contra Artemia salina. VII Congreso de la asociación de investigadores del Mar de Cortés y I simposium internacional sobre el Mar de Cortés. Academia de Ciencias del Mar del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
- Cekolin, C. S., J. E. Donachy, C. S. Sikes. 1993. Toxicity studies of antiscalant agents using *Arbacia ponstulata* gametes and embryos as test organisms. *Bulletin Environmental Contamination and Toxicology*. 50: 108-115.

- Congiu, A. M., E. Calendi y G. Ugazio. 1984. Effects of metal ions and CCl4 on sea urchin embryos. *Research Communication in Chemistry Pathology and Pharmacology*. 43:317-325.
- **Dinnel, P. A., J. M. Link y Q.J. Sober. 1987.** Improved methodology for a sea urchin sperm biossay for marine waters. *Archives Environmental Contamination and Toxicology.* 16:23-32.
- **Dinnel, P. A., G. G. Pagano, P. S. Oxida. 1988.** A sea urchin test system for marine environmental monitoring. In: Burke R.D. Mladenov, P.V. Lambert, P. Parsley R.L (eds) *Echinoderm Biology*. Balmeka, Rotterdam, pp 611-619.
- **Dinnel, P. A. 1995.** Evolution and present status of the sea urchin sperm test. *Russian Journal of Marine Biology* 21: 344-350.
- Duckworth, A. R., C. N. Battershill y P. R. Bergquist. 1997. Influence of explant procedures and environmental factors on culture success of three sponges. *Aquaculture*. 156: 251-267.
- Encarnación, R., G. Carrasco, M. Espinoza, U. Anthoni, P. H. Nielsen, C. J. Christophersen. 1989. Neothyoside A, Proposed Structure of a Triterpenoid Tetraglycoside from the Pacific Sea Cucumber, Neothyone Gibbosa. *Journal of Natural Products*. 52, 248-251.
- **Faulkner, D. J. 1993.** Marine natural products. *Natural Product Reports.* 9, 323-539.
- **Faulker, D. J. 1999.** Marine natural products. *Natural Product Reports.* 16,155-198, and previous reviews of this series.
- Fenical, W., R. K. Okuda, M. M. Bandurraga, P. Culver, y J. Roberts. 1981. Lophotoxin: a novel neuromuscular toxin from pacific sea whips of the genus *Lophogorgia*. *Science*. 212:1512-1514.
- Fernández, J. A, y I. E. Soria. 1999. Implicaciones de la variación en la actividad biológica de organismos bentónicos y ecología química. VII Congreso de la asociación de investigadores del Mar de Cortés y I simposium internacional sobre el Mar de Cortés. Academia de Ciencias del Mar del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora
- Finney, D. J. 1971. Probit Analysis, Cambridge University Press. Cambridge.
- Fusetani, N. 1987. marine metabolites which inhibit development of echinoderm embryos. In. ed. P. J. Scheuer, *Bioorganic Marine Chemistry*, vol. 1. Springer-Verlang Publishers, Berlin, Heidelberg, pp. 61-92.
- Fusetani, N., Y. Kato, S. Matsunaga y K. Hashimoto.1983. Bioactive marine metanolites III 1 a novel polyacetylene alcohol, inhibitor of cell división in fertilizad sea urchin eggs, from the marine sponge *Tetrosia* sp. *Tetrahedron Letters*. 24: 2771-2774.
- Fusetani, N., H. Nagata, H. Hirota y T. Tsuyuki.1989. Astrogorgiadiol and astrogorgin, inhibitor of cell división in fertilizar starfish eggs, from a gorgonian *Astrogorgiata* sp. *Tetrahedron Letters*. 30: 7079-7082.
- Gaete, H., J. Silva, A. Riveros, E. Soto, L. Troncoso, E. Bay-Schimith, A.

- Larrain. 1996. Efecto combinado y riesgo ecológico de las concentraciones de Zn, Cu y Cr presentes en el Puerto de San Vicente, Chile. *Gayana Oceanol* 4:99-107.
- **Garrido, L., E. Zubia, M. J. Ortega, y J. Salva. 2000.** Isolation and structure elucidation of new cytotoxic steroids from the gorgonian *Leptogorgia sarmentos*. *Steroids*. 65:85-88.
- García-Grávalos, L. de Quesada., T. G. Faircloth, y J. Jimeno. 1994. Identification of marine natural products with antineoplastic activity. 19th Congress of the European Society for Medical Oncology. *Annals of Oncology*. 5(8): 185.
- **Graillet, C., G. Pagano y J. P Girard. 1993.** Stage specific effects of teratogens on sea urchin embryogenesis. *Teratogenesis Carcinogenesis and Mutagenesis.* 13: 1-14.
- Green, G. y G. Bakus. 1975. Toxicidad en esponjas y holoturias. *Anales de. Centro de Ciencias del Mar y Limnologia, UNAM*, 2(1): 61-66.
- Green, G. 1977. Antibiosis in Marine Sponges. FAO Fisheries Report, 200:199-205.
- **Green, G., P. Gómez y G. J. Bakus. 1985.** Antimicrobial and ichthyotoxic properties of marine sponges from Mexican Waters. *3d. International Sponge Conference*. 109-114.
- **Green, G., P. Gómez, y G. J. Bakus. 1990.** Antimicrobial and ichthyotoxic properties of marine sponges from Mexican Waters. In, *New* perspectives in sponge biology, edited by K. Rützler, Smithsonian Institution Press. Washington D.C., pp 102-114.
- Higa, T., L. G. Grávalos, G. Faircloth y J. Jimeno. 1995, Mycaperoxides: A Family of Marine Derived Natural Products with Antitumor Activity. *Proceedings of the American Association for Cancer Research*. 36: 389.
- Hose, J. E. 1985. Potencial uses of sea urchin embryos for identifying toxic chemical: Description of a bioassay incorporating cytologic, cytogenetic and embryologic endpoints. *Journal of Applied Toxicology*. 5:245-254.
- Huffman, A. 1992. Comparative sensitivity of gametes and early developmental stages of a sea urchin species (*Echinometra mathaei*) and bivalve species (*Isognomon californicum*) during metal exposure. *Archives of Environmental Contamination Toxicology*. 22:288-295.
- **Higuchi, R., T. Miyamoto, K. Yamada y T. Komori. 1998.** Cytotoxic and icthyotoxic compounds from marine ophisthobranchia and soft coral. *Toxicon.* 36: 1703-1705.
- Huysecom, J., G. Van der Vyver, J. C. Braekman, D. Daloze. 1990. Chemical defense in sponges from North Britany. In: Ruetzler, K (ed.) *New perspectives in sponge biology*. Smithsonian Institution Press, Washington, D.C., pp 115-118.
- Ireland, C. M., B. R. Copp, M. P. Foster, L. A. McDonald, D. C. Radisky y J. C. Swersey. 1993. Biomedical potential of marine natural products. In: *Marine Biotechnology* (Attaway, D.H. and Zaborky, O.R., Eds). New York: Plenum Press, pp 1-43

- Kelly-Gutiérrez, L. D., I. E. Soria-Mercado y J. A. Fernández-Apango. 1999. "Detección y variación interanual de la bioactividad en invertebrados bentónicos de Bahía Concepción, B.C.S., México, VII Congreso de la asociación de investigadores del Mar de Cortés y I simposium internacional sobre el Mar de Cortés. Academia de Ciencias del Mar del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
- Kersetter H. W, D. J. Schaffer. 1983. Brine shrimp (Artemia salina) nauplii as a teratogen test system. Ecotoxicology Environmental Safety 7(5)435-446.
- King Diaz, R. 1982. Estudio de la actividad tóxica y antimicrobiana de algunas esponjas marinas. Tesis Profesional, 40 pp. UNAM, México D.F.
- **Kobayashi, N. 1969.** Spawning periodicity of sea urchins at Seto III. *Science and Engineering Reviews Doshisha University.* 9: 42-57.
- **Kobayashi, N. 1971.** Fertilización de huevos de erizo como material indicador para bioensayos de contaminación marina, experimentos preliminares. Fertilized sea urchin eggs as an indicatory material for marine pollution bioassay, preliminary experiments. *Publication Seto Marine Biology Laboratory.* 18 (6), 179-406.
- **Kobayashi, N. 1984.** Marine ecological testing with echinoderms. In *Ecological Testing for the Marine Environment*, ed. G. Persoone and C. Clauss, Vol. 1. Lab Biol. Res. Aquat. Pollut., State University Ghent, pp. 341-405.
- **Kobayashi, N. 1995.** Bioassay data for marine pollution using echinoderms. In *Encyclopedia of Environment Control Technology*, ed. P.P. Cheremisinoff, Vol. 9, pp. 539-609. Gulf Publ. Co., Houston, TX.
- **Krause, P. R. 1994.** Effects of an oil production effluent on gametogenesis and gametes performance in the purple sea urchin (*Strongylocentrotus pupuratus* Stimpson). *Environmental Toxicology and Chemistry.* 13:1153-1161.
- **Kuwarabara, K., A. Nakamura, T. kashimoto.1980.** Effects of petroleum oil, pesticides, PCBs and other environmental contaminants on the hatchability of *Artemia salina* dry eggs. *Bulletin Environmental Contamination and Toxicology.* 25: 69-74.
- **Larrain, A., A. Riveros, J. Silva, E. Bay-Schmith. 1999.** Toxicity of metals and pesticides using the sperm cell bioassay with the sea urchin *Arbacia spatuligera*. *Bulletin Environmental Contamination Toxicology*. 62: 749-757.
- Malpezzi, E y J. C. Freitas. 1990. Antimitotic effects of an extract of the sea anemone *Budonosoma caissarum* on sea urchin egg development. *Brazilian Journal of Medical Biology Research*. 23, 811-814.
- Martín, D. y M. J. Uriz. 1993. Chemical bioactivity of Mediterranean benthic organisms against embryos and larvae of marine invertebrate. *Journal of Experimental Marine Biology and Ecology.* 173: 11-27.
- Matamoros, R. 1984. Sistemática y distribución de los corales blandos (Coelenterata, Octocorallia: Orden Gorgonacea) de la bahía de Mazatlán Sinaloa, México. Tesis Licenciatura, 113 pp. Universidad Nacional Autónoma de México.
- McClintock, J. B. 1987. Investigation of the relationships between invertebrate

- predation and biochemical compositions, energy content, spicule armament and toxicity of benthic sponges at McMurdo sound, *Antartica Marine Biology*. 94: 479-487.
- Meyer, B. N., N. R. Ferrigni., J. E. Putnam., L. B Jacobsen., D. E. Nichols y J. L. McLaughlin. 1982. Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents. *Journal of Medical Plant Research*. 45: 31-34.
- Michael A. S., C. G. Thompson, M. Abramovitz. 1956. Artemia salina as a test organism for a bioassay. Science 123,464.
- Migliore, L., C. Civitareale, G. Brambilla y G. D. D. Delupis. 1997. Toxicity of several important agricultural antibiotics to *Artemia. Water Research*. Vol. 31, No. 31, 1801-1806.
- Montiel-Pichardo, A., I. E. Soria-Mercado, J. A. Fernández-Apango. 1999. "Variación de la actividad biológica de la esponja marina Chondrilla nucula en el tiempo y a nivel microgeográfico. VII Congreso de la asociación de investigadores del Mar de Cortés y I simposium internacional sobre el Mar de Cortés.
- Morell, C. M y J. A. Adams. 1993. Tocixity of verrucarin a to gametes and embryos of the purple sea urchin (*Arbacia punctulata*). *Bulletin of Environmental Contamination and Toxicology*. 51: 889-894.
- Munro, M. H. G., J. W. Blunt, G. Bars, C. N Battershill, R. S Lake y N. B Perry. 1989. Biological activity in New Zealand marine organisms. *Pure and Applied Chemistry*. 61: 529-534.
- Mwatibo, J. W y J. D. Green. 1997. Effects of Methoxychlor preexposure on sea urching gametes. *Bulletin of Environmental Contamination and Toxicology*. 58:589-595.
- Neiheisel. T. M y M. E. Young.1992. Use of three artificial sea salt to maintain fertile sea urchins (*Arbacia punctulata*) and to conduct fertilization test with copper and sodium dodecyl sulfate. *Environmental Contamination Toxicology and Chemical*. 11:1179-1185.
- Nipper, M. G, V. A, Prosperi, A. J, Zamboni. 1993. Toxicity testing with coastal species of southeastern Brazil. Echinoderm sperm and embryos. Bulletin of *Environmental Contamination and Toxicology*. 50: 646-652.
- Otha, S., U. Mihoko, M. Tokumasu, Y. Hiraga y S. Ikegami. 1996. Hipposspongic acid A: an unusual triterpenoic acid from a marine sponge, *Hipospongia* sp., wich inhibits gastrulation of starfish embryos. *Tetrahedron Letters*. 37: 7765-7766.
- Pagano, G. Y Trieff. 1992. Use of echinoids in in vitro embryotoxicity and teratogenicity studies. *Toxicology in Vitro*. 6: 177-179.
- Pagano, G., M. Cipollaro, G. Corsale, A. Esposito, E. Ragucci, G. Giordano y N-M. Trieff. 1986. The sea urchin:bioassay for the assessment of damage from environmental contaminants. In *Community Toxicity Testing*, ed. J. Cairns JR. pp. 66-92. American Society for Testing and Material, Philadelphia.
- Pawlik J. R., M. T. Burch, y W. Fenical. 1987. Patterns of chemical defense amongs Caribbean gorgonian corals: a preliminary survey. Journal of

- Experimental Marine Biology and Ecology. 108, 55-66.
- **Pennington J. T., M. G. Hadfield. 1989.** Larvae of a nudibranch mollusc (*Phestilla sibogae*) metamorphose when exposed to common organic solvents. *Biological Bulletin*, 177:350-355.
- **Persone.** G y P. Van Haecke. 1981. Intercalibration exercise on a short-term standard toxicity test with *Artemia* nauplii. Final report. Contract CEE-ENV-396 B(N). 30 pp.
- **Persone, G y P. G. Well. 1987.**Artemia in aquatuc toxicology: a review. In *Artemia Research and its Applications*. Vol. 1. Morphology, Genetics, Strain characterization, Toxicology. /Edited by P. Sorgeloos *et al.*) 269-275. Universa Press, Wetteren Belgium.
- Pesando, D., J-P. Girard, M. Durand-Clément, P. Payan y S. Puiseux-Dao. 1991. Effect of maitotoxin on sea urchin egg fertilization and on Ca ²⁺ permeabilities of egg and intracellular stores. *Biology of the Cell*. 72: 269-273.
- Pesando, D., C. Dominice, M. Dufour, G. Guillon, P. Jouin y B. Ciapa. 1995. Effect of nordidemnin on the cell cycle of sea urchin embryos. Role in synthesis and phosphorylation of proteins and in phosphoinositide turnover in mitosis progression. *Experimental Cell Research*. 220: 18-28.
- Pesando, D., R. Lemée, C. Ferrua, P. Amade y J-P. Girard. 1996. Effects of caulerpenyne, the major toxin from *Caulerpa taxifolia* on mechanisms related to sea urchin egg cleavage. *Aquatic Toxicology*. 35, 139-155.
- **Proksch, P. 1994.** Defensive roles for secondary metabolites from marine sponges and sponge-feeding nudibranchs. *Toxicon*. 32(6): 639-655.
- Rinehart Jr, K. L., P. D. Shaw, L. S. Shield, J. B. Gloer, G. C. Harbour, M. E. S. Koker, D. Samail, R. W. Schwartz, A. A. Tymiak, D. L. Weller, G. T. Carter, M. H. G. Munro, R. G. Hughes Jr, H. W. Renis, E. W. Swynenberg, D. A. Stringfellow, J. J. Vavra, J. H. Cotas, G. E. Zurenko, S. L Kuentzel, L. H. Li, G. J. Bakus, R. C. Brush, L. L. Craft, D. N. Young y L. L. Connor. 1981. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. *Pure and Applied Chemistry*. 53:795-817.
- Prince Pr
- Rinehart, K.R., L.S Shield y M. Cohen-Parsons. 1993. Antiviral substances. In *Marine Biotechnology* I, pp 309-342 (Attaway, D.H y Zaborsky, O.R., Eds). New York: Plenum Press.
- Rinehart, K. H. 2000. Antitumor compounds from tunicates. *Medical Research Review*. 20(1): 1-27.
- Riveros, A., M. Zúñiga, A. Larrain, J. Becerra. 1996a. Realtionships between fertilization of the Southeastern pacific sea urchin *Arbacia spatuligera* and environmental variables in polluted coastal waters. *Marine Ecology Progress Series*. 134: 159-169.

- Riveros, A., L. Troncoso, J. Siva, E. Soto, A. Cifuentes, H. Gaete, E. Bay-Schmith, A. Larrain. 1996b. Calidad ecotoxicológica de aguas receptoras de efluentes de industrias pesqueras. Un análisis sinóptico de efectos sobre varias especies, con aguas de Coronel, San Vicente y Rocuant (Región de Bío-Bío, Chile) Gayana Oceanol. 4:77-91.
- Rueda, A., E. Zubía, Mª. J. Ortega, J. L. Carballo, y J. Salvá. 1997. New cytotoxic metabolites from the sponge *Cacospongia scalaris*. *Journal Organic Chemistry*, 62: 1481-1485.
- **Sibley, P. K., D. G. Dixon, D. R. Barton. 1993.** Toxicity of sediments below a bleached kraft pulp mill to benthic macroinvertebrates. *OME 36th Conference of the International Association for Great Lakes Research*, June 4-10. Program and Abstracts, p 43.
- Selem, F., D. Pesando, G. Bodennec, A. El Abed y J. P, Girard. 2000. Toxic effects of *Gymnodinium CF*. *Mikimotoi* unsaturated fatty acids to gametes and embryos of the sea urchin *Paracentrotus lividus*. *Water Research*. 34: 550-556.
- **Sleet R. B., K. Brendel. 1983.** Improved methods for harvesting and counting synchronous populations of *Artemia* nauplii for use in developmental toxicology. *Ecotoxicol Environmental Safety.* 7: 435-446.
- **Sleet R. B., K. Brendel. 1985.** Improved methods for harvesting and counting synchronous populations of *Artemia* nauplii for use in developmental toxicology. *Ecotoxicology Environmental Safety* 7:435-446
- Sorgeloos P., Van Der Wielen R. C, G. Persoone. 1978. The use of Artemia nauplii for toxicity tests. A critical analysis. Ecotoxicology Environmental Safety 2:249-255
- Soria, I. E., L. D. Kelly, G. Villareal, y A. Montiel. 1999. Ecología química de organismos bentónicos de Santispac, BCS., México. VII Congreso de la asociación de investigadores del Mar de Cortés y I simposium internacional sobre el Mar de Cortés. Academia de Ciencias del Mar del Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora.
- Suffness, M y J. Douros. 1979. In DeVita, V.T. and H Busch (eds.): Methodos in Cancer Research, Vol. 16, Cancer Drug Development, Part A, p.73. New York. Academic Press
- Trieff, N. M., L. A, Romaña, A. Esposito, R. Oral, F. Quiñiou, M. laccarino, N. Alcock, V. M. S. Ramanujam y G. Pagano. 1995. Effluent from bauxite factory induces developmental and reproductive damage in sea urchins. Archives of Environmental Contamination Toxicology. 28, 173-177.
- Uriz, M. J., D. Martín, X. Turon, E. Ballesteros, R. Hughes, C. Acebal. 1991. An approach to the ecological significance of chemically mediated bioactivity in Mediterranean benthic communities. *Marine Ecology Progress Series*. 70:175-188.
- Underwood, A.J., M.G. Chapman, S.A. Richards and M.B. Sage. GMAV 1997 Institute of Marine Ecology, University of Sydney
- Van Alstyne, K.L., C. W. Wyle y V. J. Paul. 1994. Antipredator defenses in tropical

- Pacific soft corals (Coelenterataa: Alcyonaria). II. The relative importance of chemical and structural defenses in three species of *Sinularia*. *Journal of Experimental Marine Biology and Ecology*. 178, 17-34.
- Vanhaecke, P., G. Persoone, C. Claus, P. Sorgeloos. 1981. Proposal for a short term toxicity test with *Artemia* nauplii. *Ecotoxicological Environmental Safety*. 5:382-387.
- Warnau, M., M. lacarrino, A. De Biase, A. Temara, M. Jangoux. P. Dubois y G. Pagano. 1996. Spermiotoxicity and embryotoxicity of heavy metals in the echinoid *Paracentrotus lividus*. *Environmental Toxicology and Chemistry*. 15: 1931-1936.
- Woodworth, J. G., C. King, A. G. Miskiewicz, E. Laginestra y J. Simons. 1999. Assessment of the comparative toxicity of sewage effluent from 10-sewage treatment plants in the area of Sydney, Australia using an Amphipod and two sea urchin bioassays. *Marine Pollution Bulletin*. 39(1-12): 174-178.
- Wright, A. E., D. A. Forleo, G. P. Gunawrdana, S. P. Gunasekera, N. F. E. Koeh y O. J. McConell. 1990. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian *Ecteinascidia turbinata*. *Journal Organic Chemistry*. 55(15): 4508-4512.
- Yamada, K., T. Ujile, K. Yoshida, T. Miyamoto y R. Huguchi. 1997. Sinulobatins A-D, new amphilectane-type diterpenoids from the japanese soft coral *Sinularia* nanolobata. Tetrahedron. 53: 4569-4578.
- Zar, H. J. 1984. Biostatistical analys. Prentice-Hall Inc: New Jersey. 243 p.
- Zubía, E., Mª. J. Ortega, J. L. Carballo y J. Salvá. 1997. New cytotoxic metabolites from the sponge *Mycale micracanthoxea*. *Tetrahedron*. 53: 331-340.
- Zuñiga, M., R. Roa, A. Larrain. 1995. Sperm cell bioassay with the sea ur4chin *Arbacia spatuligera* on sample from two polluted Chilean coastal sites. *Marine Pollution Bulletin*. 30: 313-319.

6

XI. ANEXO: Clasificación taxonómica de las especies estudiadas.

XI. ANEXO: Clasificación taxonómica de las especies estudiadas

ESPONJAS

Reino Animal
Phylum Porifera
Clase Demospongiae.

Orden Verongida. Bergquist, 1978. Familia Aplysinidae Hyatt, 1877 Género *Aplysina* Nardo, 1833 *Aplysina sp*

Orden Poecilosclerida Topsent, 1928
Familia Mycalidae Lundbeck, 1905
Género *Mycale* Gray, 1867 *Mycale parishii (*Bowerbank, 1875)

Orden Hadromerida Topsent, 1894
Familia Chondrillidae Gray, 1872
Género *Chondrosia* Nardo, 1833 *Chondrosia chucalla* De Laudenfels 1936.

Orden Dyctioceratida. Minchin, 1900.

Familia Spongiidae Gray, 1867.

Género *Hyatella Hyatella intestinalis* Lamarck, 1814.

Orden Dendroceratida. Minchin (1900) Familia Dysideidae Gray, 1867. Género *Dysidea* Johnston, 1847

Dysidea sp

GORGONIAS

Reino Animal

Phylum Cnidaria

Clase Anthozoa

Orden Gorgonacea

Familia Heterogorgidae

Género Lophogorgia

Lophogorgia rigida Verril, 1864

Lophogorgia peruana Verril, 1868

Lophogorgia sp

Orden Gorgonacea

Familia Heterogorgidae

Género Pacifigorgia

Pacifigorgia adamsii (Verril) Stiasny, 1938

Orden Gorgonacea

Familia Muriceidae

Género Muricea

Muricea spl Harden, 1979

DEDICATORIA

A la vida que hace de mi existencia una excitante aventura, la cual disfruto día a día amando lo que tengo aun con los obstáculos que se presentan.

A mis padres quienes me han dado todo con amor a su manera y a sus posibilidades para ir subiendo cada peldaño que tiene la vida. Los amo.

A mis hermanos Yolanda, Cristina, Humberto, Víctor, Mónica ,y Rebeca; a mis cuñados y cuñadas por ese cariño y apoyo que siempre me dan muy a su forma de ser de cada uno.

A mis amigos de quienes disfruto su amable compañía, por tener en quien confiar, por lo que me han mostrado y por los momentos que hemos disfrutado, y los que faltan.

A mis amigos de la universidad que aunque ahora cada quien esta en diferentes áreas estamos cumpliendo nuestros sueño, los recuerdo de forma especial. Deyra Kelly, Valeria Gamma y Alejandro Ríos.

A ti, que has estado en el lugar exacto de mi vida comprendiendo mis necesidades, apoyando mis decisiones y regalándome un refugio muy confortable. Sabes que a pesar de la distancia somos seres unidos que luchan de forma independiente para disfrutar juntos y en armonía los placeres que nos puede dar la vida a base de esfuerzo, trabajo y constancia, por que la vida se vive por momentos y hay que saber disfrutarlos.

A mis sobrinos Brenda, Sergio, Iván, Ulises ojalá les sirva de inspiración y que logren sus sueños.

Además dedico este trabajo a todos los que de alguna manera, me respaldaron con sus actos y a los que se que lo hacen pero ya no están conmigo por que se adelantaron, los llevo en mi corazón.

Pilar Alejandra